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“This Climate Test Bed (CTB) Joint Seminar Series is 
going to focus on the CTB strategic priorities; 
specifically composed of the Research to Operation 
(R2O) component, i.e. NCEP Climate Forecast System 
(CFS) improvement, multi‐model ensemble, climate 
forecast products, and the Operation to Research (O2R) 
component of using CFS for scientific research.” 

— Opening address by Fiona Horsfall, 
      Director of NOAA Climate Test Bed 
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Fig. 1.  Average Heidke skill score (HSS, lines) over 1995-2004 for 30 official (OFF) forecasts (top row) 
made in real-time and retrospective objective consolidation (CON) forecasts (middle row) of ½-
month lead 3-month precipitation. The colored shading indicates the percent of the time that forecasts 
with other than equal chances forecasts were made. The scale is indicated by the bar at the bottom of 
the diagram. Lines and colors in the bottom row of maps indicate the difference between CON and 
OFF % non-EC forecasts. 

US National Oceanic and Atmospheric Administration 
Climate Test Bed Joint Seminar Series 
ESSIC/UMD, College Park, Maryland, 17 November 2008     

Regional and Seasonal Improvements in the Skill and 
Value of CPC 3-Month Outlooks 

Edward A. O’Lenic, David A. Unger, Kenneth S. Pelman, and Mike Halpert 
Climate Prediction Center, NOAA/NWS/NCEP 

O’Lenic et al. (2008) reported on the use of an objective technique which, on dependent data from 1995 
through 2004, improved the average Heidke skill score of CPC’s operational ½-month-lead 3-Month 
temperature and precipitation outlooks from 22 to 24, for temperature, and from 8.8 to 12.1, for precipitation.  

This paper extends that work by calculating the increase in the percentage of the time non-EC (equal 
chances) probabilities are predicted, over the 1995-2004 dependent data period. The fraction of the map 
covered by non-EC probabilities is one metric of usefulness which users are quite sensitive to. Reducing the 
area covered by EC (33.33…% for each of the three tercile categories) is highly desirable. 

Each map in the top row of Fig. 1 shows the average Heidke skill score (HSS, lines, see Appendix) over 
1995-2004 for 30 official (OFF) forecasts of ½-month lead precipitation, made in real-time.  

Correspondence to:  Edward A. O’Lenic, Climate Prediction Center, NOAA/NWS/NCEP; 
 E-mail:  Ed.Olenic@noaa.gov 

mailto:Ed.Olenic@noaa.gov


 

 

 Fig. 2.  Same as Figure 1 except for the temperature forecast. 

2 SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 

The second row from the top shows the same information as the top row, except for forecasts made using 
an objective technique (Unger et al., 2009) to numerically combine the identical set of forecast tools which 
were available to the forecasters in real-time during 1995-2004. This is referred to as the consolidation 
(CON). These tools include the 2-tier NCEP coupled model described in Ji and Leetmaa (1995), the optimum 
climate normals (OCN, or trend) (Court, 1967-68),  the canonical correlation analysis (CCA) (Barnston, 
1997), and the screening multiple linear regression (SMLR). The latter two tools are multi-variate statistical 
techniques. 

The lines and colors in the set of maps on the third row show the arithmetic difference between the CON 
and OFF maps in rows 1 and 2. A number near the bottom right side of each map shows the map average of 
this difference. The CON technique averages a higher percentage of non-EC forecasts than did the OFF by 
8%, in spring, 18%, in summer, 16%, in fall, and 20%,  in winter. Since the trend is relatively small for 3-
month precipitation, these improvements are smaller than those for temperature, but still large enough to be 
noticeable to users. 

The results for temperature are shown in Fig. 2.  

The consolidation technique produces large increases in non-EC forecast percentages for temperature 
(Fig. 2): 11%, for spring, 31%, for summer, 40%, for fall, and 55%, for winter. This large increase is due, in 
part, to the fact that the trend is more strongly reflected in temperature than it is in precipitation (Fig. 1).  

Since these results are on dependent data, we show, in Fig. 3, the result of using the CON technique in 
operational ½-month lead 3-Month temperature outlooks since 2006. There is a clear break in the time series 
of 48-month running mean HSS which commences when the CON was implemented into CPC operations in 
early 2006. This performance is evidence that the CON technique is a reasonable way to present forecasters  
with an accurate first-guess from which to begin forecasting. 



 
 

 

 

  
  

        
 

         

 

 

   

 

 

 

  
 

 

3 O’LENIC ET AL. 

Appendix 

The Heidke skill score (HSS) is a 
categorical score which compares the 
accuracy of a forecast of interest (e.g., 3-
month outlooks) with that of a reference 
forecast, such as climatology (random) 
forecasts: 

HSS= (c-e)/(t-e)*100% 
where c = # gridpoints forecast correctly

 e = # gridpoints expected correct 
randomly

 t = # gridpoints in total  
In a 3-class, tercile system, -50≤HSS ≤ 100. 

References 
Barnston, A. G., 1994: Linear statistical 

short-term climate predictive skill in the 
Northern Hemisphere, J. Climate, 7, 
1513-1564. 

Court, A., (1967-68):  Climate normals as 
predictors: Parts I-IV. Science Reports, 
Air Force Cambridge Research Laboratory, Bedford MA, Contract AF19(628)-5176. 

Ji, M. A., A. Kumar, and A. Leetmaa, 1994:  A multi-season climate forecast system at the National 
Meteorological Center. Bull. Amer. Meteor. Soc., 75, 569-577. 

O’Lenic, E. A., D. A. Unger, M. S. Halpert, and K. S. Pelman, 2008:  Developments in operational long-
range prediction at CPC. J. Weather and Forecasting, 23, 496-515. 

O’Lenic, E.A., D.A. Unger, M.S. Halpert, and K. S. Pelman, 2008:  Corrigendum. J. Weather and 
Forecasting, 23, 1044. 

Unger, D., H. van den Dool, E. OL'enic, and D. Collins, 2009:  Ensemble regression. Mon. Wea. Rev., in 
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Fig. 3.  48-month running mean of the Heidke skill score of 
real-time, operational ½-month lead 3-month temperature 
outlooks from September 2002 through September 2008 
(blue line) (GPRA score).  The red line is the GPRA goal. 
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US National Oceanic and Atmospheric Administration 
Climate Test Bed Joint Seminar Series 
NCEP, Camp Springs, Maryland, 24 November 2008 

Annual Cycle and Prediction of Interannual Variability 
Zhaohua Wu 

Department of Meteorology & Center for Ocean-Atmospheric Prediction Studies 
Florida State University, Tallahassee, FL 

1. Some Issues of Climate Prediction 

There are four major issues that we concerned in this talk. The first one is the reference frame for climate 
anomaly. Current climate prediction of interannual variability starts mostly with what is called climate 
anomaly, which is the deviation of a climate variable from its reference frame, often its annual cycle. 
Traditionally, this annual cycle is taken to be an exact repeat of itself year after year. Such defined reference 
frame for climate anomaly has several drawbacks: (1) The repetitive annual may not reflect well the intrinsic 
nonlinearity of the climate system, especially under external forcing, for we are concerning the annual cycle 
of a climate variable which is the response of nonlinear climate system to external forcing rather than the 
periodicity of the external forcing itself; (2) The traditional annual cycle defined uses an a priori determined 
episode of a climate data, e.g., from 1960 to 1990. This a priori determined episode is not backed by any 
physical reason; rather, it is just for convenience. This ‘convenience’ unfortunately brings inconvenience, for 
we can define annual cycles of other episodes with equal validation. Following the way of defining traditional 
annual cycle, we can define numerous versions annual cycles as well as numerous versions of anomaly; and 
(3) When the anomaly with a traditional annual cycle is examined more carefully, we would find that the 
anomaly may still contain “annual cycle”, which leads to the conceptual inconsistency for the anomaly. 

Recently, Wu et al. (2008) has proposed an alternative reference frame for climate anomalies, the 
modulated annual cycle (MAC) that allows the annual cycle to change from year to year, for defining 
anomalies. The MAC is temporally locally determined so that it is unique and has some “absoluteness” for 
any given climate time series. Moreover, the temporally locality of MAC also bypasses stationarity and linear 
assumptions of a climate time series often used in the majority of climate studies, and hence, the anomaly 
being defined is also unique. The MAC reference frame has been demonstrated to have many advantages in 
our understanding of climate system by Wu et al. (2008). For examples, the re-emergence mechanism may be 
alternatively interpreted as an explanation of the change of the annual cycle instead of an explanation of the 
interannual to interdecadal persistence of SST anomalies; the ENSO phase locking can largely be attributed to 
the residual annual cycle (the difference of the MAC and the corresponding traditional annual cycle) 
contained in the traditional anomaly, and, therefore, can be alternatively interpreted as a part of the annual 
cycle phase locked to the annual cycle itself. It was also shown in Wu et al. (2008) that using MAC as a 
reference framework for anomaly can bypass the difficulty brought by concepts such as “decadal variability 
of summer (or winter) climate” for understanding the low-frequency variability of the climate system.  

The second major issue is what the predictable part of a climate variable, e.g., the sea surface temperature 
at Niño3.4 region, is for short term (for example, one year) climate prediction. A time series of climate 
variable contains noise, sub-annual high frequency variability, changing annual cycle, interannual and longer 
timescale variability, and secular trend. For variability of different timescales, the physical reasons that lead to 
the variability of particular timescales may be different. A handy example is the SST at Niño3.4 region, of 
which the sub-annual variability and the changing annual cycle may have more to do with (in large-scale view) 
the direct response of the tropical upper ocean to solar radiation while the interannual variability has more to 
do with the atmosphere-ocean coupled instability and equatorial wave dynamics, a relatively slowly evolving 
physical process. 

To further explain the concept of the predictability of climate system, we use string-mass-pendulum 
system under random forcing, which is sketched in Figure 1. Suppose that the cube of large mass move 
leftward or rightward slowly and the small ball swings fast, the actual position of the ball of the pendulum can 

Correspondence to: Zhaohua Wu, Department of Meteorology & Center for Ocean-Atmospheric Prediction Studies, 
Florida State University, Tallahassee, FL;  E-mail:  zwu@fsu.edu 

mailto:zwu@fsu.edu


 

 

 

 
 

  

 
 
 

 

 
 

 

 

 
 

 
 

 

 
 

 

 

 
 

   

 

   

 
 

WU 5 

be determined by the position of the cube and the position of ball with respect to the balance point of the 
pendulum. In the case of no random forcing, the positions are quite predictable for both the cube and the small 
ball with respect to the balance point of the pendulum, and thereby the actual position of the small ball. When 
there is moderate random forcing, due to the large inertia of the cube, its left-rightward oscillation would not 
be affected much, therefore, the position of the cube is still predictable. However, the position of small ball 
with respect to the balance point of the pendulum is affected significantly by the random forcing, and, 
therefore, is not predictable. 

A relevant question is whether an 
accurate prediction model of the small 
ball based on the historical record of the 
position of the small ball can be 
constructed. Due to different physical 
processes (string-mass system and 
pendulum system) hidden in the record 
of the small ball and to the lack of a 
priori knowledge of the hidden string-
mass system and pendulum system and 
the random forcing, a simple oscillatory 
model may not explain the position data 
and can not predict the position of small 
ball well. The inference of this argument 
is that we should be less ambitious: 
instead of trying to predict the exact 
location of small ball, we rather focus 
on the prediction of the location of the 
predictable part, the location of the cube. 
The implication of this analogue for 
short term climate prediction is: We 
should try to isolate the predictable part, 
the relatively low-frequency part of the 
climate data and make prediction of that, 
and leave out the hardly predictable high 
frequency part. 

The third major issue is from data 
analysis perspective, as displayed in 
Figure 2. Suppose that the blue line is a 
climate index. If we construct a 
statistical model, e.g., a Markov model, 
directly based on this index and use that 
to predict the exact value of the index 
for future, we can not predict well. 
However, if we separate the two 
components, which have exact functional forms (with the simple physical mechanisms), we can predict both 
the functional forms separately with accuracy. As a consequence, we can predict the blue line accurately. This 
synthetic example implies that for a climate time series, we may obtain a better prediction based on the 
predictions of individual components of the time series.  

The last major issue is related to the non-stationarity of the climate data. In many statistical prediction 
models, which are constructed based on the data over the whole temporal domain, stationarity is a pre-
requirement. However, if the climate data was generated by non-stationary processes, the stationarity 
assumption used in the construction of a model would lead to significant error of prediction. In such a case, a 
non-stationary approach may lead to a significantly improved prediction. 

Fig. 1.  A string-mass system analogue of climate data. 

Fig. 2.  The schematics of a synthetic climate data (blue line) and 
its components (red and black lines, two sinusoidal waves of 
different frequency). 



 

 

 

 

 

 

 
 

envelopes. The green dashed line corresponding  to Jan. 1989. 

 
 

 

Fig. 3.  The part of interannual and longer timescales of the cold 
tongue index (black line) and its oscillatory components (blue 
lines and magenta line). The red lines are upper and lower 

6 SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 

2. An Alternative Prediction Scheme 

Based on the discussions in the
previous section, we constructed an
alternative type of prediction scheme to
the traditional statistical models. The new 
scheme is illustrated in Figure 3. In Figure 
3, the black line is the interannual and
lower frequency components of cold
tongue index (CTI), an index defined
based on equatorial SST of central and
eastern Pacific. We use the Ensemble
Empirical Mode Decomposition (Huang et 
al. 1998, Huang and Wu 2008, Wu and
Huang 2009) to decompose the black line 
into oscillatory components of different
frequency  and obtain both the
instantaneous amplitude and the
instantaneous frequency for each
component. Suppose that we want to
predict the index for 1989, we first predict 
the instantaneous amplitude of each
component for the year by using cubic 
spline extrapolation based on the
instantaneous amplitude of previous years. 
By  using the instantaneous frequency of 
the Dec. 1988 for each component, we 
predict the oscillatory component one by 
one. 

Based on this scheme, we make
prediction of interannual timescale and 
longer timescale part of CTI for year 1967  
to 1999. Figure 4 presents the result of the  
retrospective prediction from each month  

 
 
 

 
 
 
 
 

 

 
 
 
 
 

 

 

 

during the period. In each prediction, the prediction duration is one year. In general, the prediction results are  
quite promising, which can be validated by the closeness of the green lines to the red line (which is the part of 
interannual and longer timescales of CTI). The predictions seem to have systematic errors: for certain years,  
the predictions are consistently higher than the index values while in the other periods, the predictions are 
consistently lower than index values.  Such systematic errors may  be reduced if other potential correction 
schemes are designed and used. 

References 

Huang, N. E. , Z. Shen, and S. R. Long, M. C. Wu, E. H. Shih, Q.  Zheng, C. C.  Tung, and H.  H. Liu, 1998: The 
empirical mode decomposition method and the Hilbert spectrum  for non-stationary time series analysis, Proc. Roy. 
Soc. London,  454A, 903-995.  
Wu, Z., E. K. Schneider, B. P. Kirtman, E. S. Sarachik, N. E. Huang, and C. J. Tucker, 2008: Amplitude-frequency 
modulated annual cycle: an alternative reference frame for climate anomaly.  Climate Dynamics. DOI  
10.1007/s00382-008-0437-z.  
Huang, N. E, and Z. Wu., 2008: A review on Hilbert-Huang Transform: the method and its applications on  
geophysical studies. Rev. Geophys., 46, RG2006, doi:10.1029/2007RG000228.  
Wu, Z., and N. E Huang,  2009: Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method. 
Advances in Adaptive Data Analysis. 1, 1-41.   

Fig. 4.  The retrospective prediction of the part of cold tongue 
index of interannual and longer timescales (red line). The 
predictions from each month are displayed by green lines. 
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US National Oceanic and Atmospheric Administration 
Climate Test Bed Joint Seminar Series 
IGES/COLA, Calverton, Maryland 3 December 2008         

Some Ideas for Ensemble Kalman Filtering 
Eugenia Kalnay 

Department of Atmospheric and Oceanic Science 
 University of Maryland, College Park, MD 

ABSTRACT 
In this seminar we show clean comparisons between EnKF and 4D-Var made in 

Environment Canada, briefly describe the Local Ensemble Transform Kalman Filter (LETKF) 
as a representative prototype of Ensemble Kalman Filter, and give several examples of how 
advanced properties and applications that have been developed and explored for 4D-Var can be 
adapted to the LETKF without requiring an adjoint model. Although the Ensemble Kalman 
Filter is less mature than 4D-Var, its simplicity and its competitive performance with respect to 
4D-Var suggest that it could become the method of choice.  

1. Prelude 

The WMO/THORPEX Workshop on Intercomparisons of 4D-Var and EnKF that took place in Buenos 
Aires, Argentina, 10-13 November 2008 was widely attended, with most major operational and research 
centers throughout the world sending several participants. Presentations are available at 
http://4dvarenkf.cima.fcen.uba.ar/. Mark Buehner et al., 2008, from Environment Canada, presented a very 
clean comparison of their operational 4D-Var and EnKF using the same model resolution for the inner loop 
as in the ensemble, and the same observations (Fig. 1). The results show that the two methods are giving 
comparable results, with a slight edge favorable to EnKF. In the SH, including a background error covariance 
based on the EnKF into the 4D-Var improved the 5-day forecast by about 10 hours (not shown). 

2. Brief review of the Local Ensemble Transform Kalman Filter algorithm (Hunt et al., 2007) 
This description is written as if all the observations are at the analysis time (i.e., for the 3D-LETKF), but 

the algorithm is the same for the 4D-LETKF (Hunt et al., 2007). In this case the observations are in a time 
interval that includes the analysis time and H is evaluated at the observation time. 

a) LETKF forecast step (done globally) for each ensemble member k: 
xb = M xa , k = 1,...K( )n,k t n−1,kn−1 ,tn 

b) LETKF analysis step (at time tn, so the subscript n is dropped):  
b b bXb = ⎡x1 

b − x ,...,xK − x ⎤;⎣ ⎦ 
b b b byk = H (xb

k ); Y
b = ⎡y1 

b − y ,.., yK − y ⎤⎣ ⎦ 
These computations can also be done locally or globally, which is more efficient. Here the overbar represents 
the ensemble average, and M and H are the nonlinear model and observation operators respectively. 
Localization: choose for each grid point the observations to be used, and compute the local analysis error 
covariance and analysis perturbations in ensemble space: 

YbT R− −1
P̂ a = ⎡(  )K −1 I + 1Yb ⎤⎣ ⎦ 

Wa Pa ]1/2 = [(K −1) ̂  

The square root required for the matrix of analysis perturbations in ensemble space Wα is computed using the 
symmetric square root (Wang et al. 2004). This square-root has the advantage of having a zero mean and 

Correspondence to: Eugenia Kalnay, Department of Atmospheric and Oceanic Science, University of Maryland, 
College Park, MD; E-mail:  ekalnay@atmos.umd.edu 

mailto:ekalnay@atmos.umd.edu
http://4dvarenkf.cima.fcen.uba.ar
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Fig. 1. Comparison of bias and standard deviation of 5-day forecasts for February 2007 in the NH and SH 
verified against rawinsondes for zonal and total wind speed, geopotential height, temperature and dew point 
depression. Blue and pink colors on the left and right side of each panel indicate the results are better for 4D-
Var and for EnKF, respectively, with a level of significance of at least 95%. From Buehner et al., 2008,

 http://4dvarenkf.cima.fcen.uba.ar/Download/Session_7/Intercomparison_4D-Var_EnKF_Buehner.pdf 

being closer to the identity than the square-root matrix obtained by Cholesky decomposition. As a result the 
analysis perturbations (chosen in different ways in different EnKF schemes) are also closest to the 
background perturbations (Ott et al. 2002). Note that Wα  can also be considered a matrix of weights since 
multiplying the forecast ensemble perturbations at each grid point by Wα  gives the grid point analysis 
ensemble perturbations. 
Local analysis in ensemble space:  

w 
a 
= Ρ̂  a Υ bT R 

b−1 ( y o − y )  
Note that wa , in the analysis ensemble space, is a vector of weights, which when multiplied by the matrix  
X b 

of forecast perturbations gives the grid point analysis increment. 
Wa ← Wa ⊕ wa 

 
Here the analysis wa is added to each column of Wα  to get the analysis ensemble in ensemble space. The  
new ensemble analyses are the K columns of 
Xa = XbWa + x b  

Global analysis ensemble: 

The analysis ensemble columns for each grid point are gathered together to form the new global analysis  

ensemble x a 
n,k , and the analysis cycle can proceed. 

http://4dvarenkf.cima.fcen.uba.ar/Download/Session_7/Intercomparison_4D-Var_EnKF_Buehner.pdf


 

 

 

  

  
 
 

 

 
 
 

  

  

 
  

   
   

    
 

   
 

tn −1 time tn 

Fig. 2.  Schematic showing that the 4D-LETKF finds the 
linear combination of the ensemble forecasts at 
tn that best fits the observations throughout the 
assimilation window t n −1 − t n . The white circles 
represent the ensemble of analyses (whose mean is 
the analysis xa ), the full lines represent the 
ensemble forecasts, the dashed line represents the 
linear combination of the forecasts whose final state 
is the analysis, and the grey stars represent the 
asynchronous observations. The cross at the initial 
time of the assimilation window tn −1  is a no-cost 
Kalman smoother, i.e., an analysis at tn −1 improved 
using the information of “future” observations within 
the assimilation window by weighting the ensembles 
at t n −1 with the weights obtained at t n . The
smoothed analysis ensemble at tn −1 (not shown in 
the schematic) can also be obtained at no cost using 
the same linear combination of the ensemble 
forecasts valid at tn given by Wa . (Adapted from 
Kalnay et al. 2007b). 

4D-LETKF 
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3. Adaptation of 4D-Var techniques into EnKF 

4DVar and EnKF are essentially solving the same problem since they minimize the same cost function 
using different computational methods. These differences lead to several advantages and disadvantages for  
each of the two methods (see, for example, Lorenc 2003; Table 7 of Kalnay et al. 2007a; discussion of 
Gustafsson 2007; response of Kalnay et al. 2007b).  

A major difference between 4D-Var and the EnKF is the dimension of the  subspace of the analysis  
increments (analysis minus background). 4D-Var corrects the background forecast in a subspace that has the 
dimension of the linear tangent and the adjoint models used in the minimization algorithm, and this subspace 
is generally  much larger than the local subspace of corrections in the EnKF determined by the ensemble size  
K-1. It would be impractical to try to overcome this apparent EnKF disadvantage by using a very large 
ensemble size. Fortunately, the localization of the error covariances carried out in the EnKF in order to 
reduce long distance covariance sampling errors, substantially addresses this problem by greatly increasing 
the number of degrees of freedom available to fit the data. As a result, experience so far has been that the  
quality of the EnKF analyses with localization  
increases with the number of ensemble members, 
but that there is little further improvement when  
the size of the ensemble is increased beyond about  
100. The observation that 50-100 ensemble
members are sufficient for the EnKF seems to hold  
for atmospheric problems ranging from the storm- 
and meso-scales to the global-scales.  

There are a number of additional attractive 
advantages of 4D-Var. They include the ability to 
assimilate observations at their right time
(Talagrand and Courtier 1987), the fact that within  
the data assimilation window 4D-Var acts as a 
smoother (Thépaut and Courtier 1991), ability to  
use the adjoint model to estimate the impact of  
observations on the analysis (Cardinali et al. 2004)  
and on the forecasts (Langland and Baker 2004),  
the ability to  use long assimilation windows (Pires 
et al. 1996), the computation of outer loops 
correcting the background state when computing 
nonlinear observation operators, the ability to use 
a lower resolution simplified model in the inner 
loop (see discussion of Fig. 3 later), and the 
possibility  of accounting for model errors by using 
the model as a weak constraint (Trémolet 2007). 
In the rest of this section we discuss how these 
advantages that have been developed  for 4D-Var 
systems can also be adapted and used in the  
LETKF, a prototype of EnKF.  

a) 4D-LETKF and no-cost smoother   

As indicated by Figure 2, the same weighted 

 

 

combination of the forecasts with weights given by  the vector w is valid at any  time of the assimilation 
interval. This provides a smoothed analysis mean that (like in 4D-Var) is more accurate than the original 
analysis because it uses all the future data available throughout the assimilation window (Kalnay et al.  
2007b; Yang et al. 2008a). It should be noted that, as in 4D-Var, the smoothed analysis at the beginning of  
the assimilation window is an improvement over the filtered analysis computed using only past data. At the 
end of the assimilation interval only past data is used so that (like in 4D-Var) the smoother coincides with the 
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analysis obtained with the filter. Similarly we can use the matrix Wα  and apply it to the forecast perturbations  
XbWα  to provide an associated uncertainty evolving with time  (Ross Hoffman, pers. comm., 2008). The  
updating of the uncertainty is critical for the “Running in Place” method described next, but the uncertainty  
is not updated in the “outer loop” approach.  

b) Application of the no-cost smoother to the acceleration of the spin-up   

4D-Var has been observed to spin up faster than EnKF (e.g. Caya  et al. 2005), presumably because of its  
smoothing properties that allow finding the initial conditions at the beginning of the assimilation window that 
will best fit all the observations. The fact that we can compute a no-cost smoother allows the development of 
an efficient algorithm, called  Running  in place  by  Kalnay  and Yang  (2008),  that should be useful in  
rapidly evolving situations.   For  example, when radar measurements first detect the development of a severe  
storm, then the current EnKF estimate of the atmospheric state and its uncertainty are no longer useful. In 
other words, while formally the EnKF members and their average are still the most likely state and best 
estimate of the uncertainty given all the past data, these EnKF estimates are no longer likely at all. At the  
start of severe storm convection, the dynamics of the system change substantially, and the statistics of the  
processes become non-stationary. In this case, as in the spin-up case in which there are no previous 
observations available, the running in place algorithm ignores the rule “use the data and then discard it” and 
recycles a few times the new observations.  

Running in place algorithm: 

This algorithm is applied to each assimilation  
window during the spin-up phase. The LETKF is 
“cold-started” with any initial ensemble mean and 
perturbations at t0 . The “running in place” loop at  
time tn (initially t0 ) is as follows: 1. Integrate the 
ensemble from  t n to t n+1 , perform a standard
LETKF analysis and obtain the analysis weights for 
the interval [tn, tn+1] , saving the  mean square
observations minus forecast (OMF) computed by  
the LETKF; 2. Apply the no-cost smoother to
obtain the smoothed analysis ensemble at tn by 
using these weights; 3. Perturb the smoothed
analysis ensemble with small zero-mean random 
Gaussian perturbations, a method similar to
additive inflation. Typically the perturbations have 
amplitudes equal to a small percentage of the
climate variance; 4. Integrate the perturbed
smoothed ensemble to tn+1 . While the forecast fit 
to the observations continues to improve according 
to a criterion such as 

OMF2 (iter) − OMF2 (iter + 1) 
 ε 2 > ,

OMF (iter) 
go to step 2  and perform another iteration. If not,  
replace t n with t n+1  and go to step 1. 

 

 

 

 

 

 
 

Fig. 3.  Comparison of the spin-up  of a quasi-
geostrophic model simulated data assimilation  
when starting from random initial conditions.  
Observations (simulated radiosondes) are available  
every 12  hours, and  the analysis RMS errors are 
computed comparing with  a nature run. Black line:  
original LETKF with 40 ensemble members, and  
no prior statistical information. Blue line: 4D-Var 
with optimal background error covariance. Red 
line: LETKF “running in place” with ε = 5%  and 
40 ensemble members. Green line:  as the red line  
but  with 20  ensemble members.   

Running in place was tested with the LETKF in a quasi-geostrophic, QG, model (Fig. 3, adapted from 
Kalnay and Yang 2008).  When starting from a 3D-Var analysis mean, the LETKF converges quickly (not 
shown), but from random initial states it takes 120 cycles (60 days) to reach a point in which the ensemble 
perturbations represent the “errors of the day” (black line in Fig. 3). From then on the ensemble converges 
quickly, in about 60 more cycles (180 cycles total).  
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By contrast, the 4D-Var started from the same initial mean state, but using as background error 
covariance the 3D-Var B scaled down with an optimal factor, converges twice as fast, in about 90 cycles 
(blue line in Fig. 3). The running in place algorithm with ε = 5% (red line) converges about as fast as 4D-Var, 
and it only takes 2-4 iterations per window even though it does not have the benefit of any prior statistical 
information.  

c) “Outer loop” and dealing with nonlinear ensemble perturbations 

A disadvantage of the EnKF 
is that the Kalman Filter 
equations used in the analysis 
assume that the ensemble 
perturbations are Gaussian, so 
that when windows are relatively 
long and perturbations become 
nonlinear, this assumption breaks 
down and the EnKF is not 
optimal. By contrast, 4D-Var is 
recomputed within an 
assimilation window until the 
initial conditions that minimize 
the cost function for the 
nonlinear model integration in 
that window are found. In many 
operational centres (e.g. the 
National Centers for 
Environmental Prediction, NCEP, 
and the European Centre for 
Medium-range Weather Forecasts, 
ECMWF) the minimization of the 
3D-Var or 4D-Var cost function is 
done with a linear “inner loop” 
that improves the initial 
conditions minimizing a cost function that is quadratic in the perturbations. In the 4D-Var “outer loop” the 
nonlinear model is integrated from the initial state improved by the inner loop, and the linearized 
observational increments are recomputed for the next inner loop (Fig. 4).  

The ability of including an outer loop increases significantly the accuracy of both 3D-Var and 4D-Var 
analyses (Arlindo da Silva, pers. comm., 2006), so that it would be important to develop the ability to carry 
out an equivalent “outer loop” in the LETKF. This can be done by considering the LETKF analysis for a 
window as an “inner loop”, and, using the no-cost smoother, adapting the 4D-Var outer loop algorithm to the 
EnKF. The method was tested with the Lorenz (1963) model with short and long windows as in Kalnay et al. 
2007a. The results (Table 1) suggest that it should be possible to deal with nonlinearities and obtain results 
comparable or better than 4D-Var by methods such as an outer loop and running in place. 

d) Adjoint forecast sensitivity to observations without adjoint model 

Langland and Baker (2004) proposed an adjoint-based procedure to assess the observation impact on 
short-range forecasts without carrying out data-denial experiments. This adjoint-based procedure can 
evaluate the impact of any or all observations assimilated in the data assimilation and forecast system on a 
selected measure of short-range forecast error. In addition, it can be used as a diagnostic tool to monitor the 
quality of observations, showing which observations make the forecast worse, and can also give an estimate 
of the relative importance of observations from different sources. Following a similar procedure, Zhu and 
Gelaro (2008) showed that this adjoint-based method provides accurate assessments of the forecast 
sensitivity with respect to most of the observations assimilated, and detected that the way certain AIRS 

Fig. 4.  Schematic of how the 4D-Var cost function is minimized in the 
ECMWF system. (From Yannick Trémolet, August 2007 class on 
Incremental 4D-Var at University of Maryland summer Workshop on 
Applications of Remotely sensed data to Data Assimilation). 



 

 

RMSE analysis error 4D-Var LETKF 
 (inflation factor) 

LETKF with less than 3 
“outer loop” iterations 

Window=8 steps (perturbations 
are approximately linear) 0.31 0.30 

(1.05) 
0.27 

(1.04) 

Window=25 steps (perturbations 
are nonlinear) 0.53 0.66 

(1.28) 
0.48 

(1.08) 

 
 

 
 

 

 

 
 

  

 
  

  

Fig. 5. Time average (over the last 7000 analysis cycles) of the contribution to the reduction of forecast 
errors from each observation location. Left: the observation at the 11th grid point has 0.8 random errors 
rather than the specified value of 0.2. Right: the observation at the 11th grid point has random errors as 
specified but it has a bias of 0.5 rather than 0.0, as specified. Ensemble sensitivity method: green line 
with closed circles; adjoint method: red line with plus signs. Adapted from Liu and Kalnay (2008). 
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Table 1.  Comparison of 4D-Var and LETKF for the Lorenz (1963) 3-variable model. 4D-Var has been 
simultaneously optimized for the window length (Kalnay et al., 2007a, Pires et al. 1996) and the 
background error covariance, and the full nonlinear model is used in the minimization. LETKF is 
performed with 3 ensemble members (no localization is needed for this problem), and inflation is 
optimized. For the 25 steps case, running in place further reduces the error to a remarkably low value 
of about 0.39. 

humidity channels were used actually made forecasts worse. Unfortunately, this powerful method to estimate 
observation impact requires the adjoint of the forecast model which is complicated to develop and not always 
available. 

Liu and Kalnay (2008) proposed an ensemble-base sensitivity method able to assess the same forecast 
sensitivity to observations as in Langland and Baker (2004), but without using the adjoint model. 

Figure 5 shows the result of applying this method to the Lorenz (1996) 40-variables model. In this case 
there were observations at every  point every  6 hours created from a “nature” run by adding Gaussian  
observational errors of mean zero and standard deviation 0.2. At the location 11, however, the standard 
deviation of the errors was increased to 0.8, (Fig. 5, left-hand panel) without “telling” the data assimilation 
system about the observation problem in this location. In Fig. 5 (right-hand panel), the standard deviation 
was kept at its correct value, but a bias of 0.5 was added to the observation at the 11th  grid point, still 
assuming that the bias was zero in the data assimilation. As shown in the figure, both the adjoint and the  
ensemble-based sensitivity were able to identify that the observations at grid point 11 had a deleterious 
impact on the forecast. They both show that the neighboring points improved the forecasts more than average  
by partially correcting the effects of the 11th point observations. 



 

 

 

 

 
 

 

 

  

 

 

  
  

Fig. 6.  The time series of the RMS analysis error in terms of the potential 
vorticity from different DA experiments. The LETKF analysis from the 
full-resolution is denoted as the black line and the 3D-Var derived at 
the same resolution is denoted as the grey line. The LETKF analyses 
derived from weight-interpolation with different analysis coverage are 
indicated with blue lines. The LETKF analyses derived after the first 20 
days from increment-interpolation with different analysis coverage are
indicated with the red lines. Adapted from Yang et al. (2008b). 
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Although the cost function in this example was based on the Eulerian norm, appropriate for a univariate 
problem, the method can be easily extended to an energy norm, allowing the comparison of the impact of 
winds and temperature observations (or any other type of observation such as radiances) on the forecasts. 

e) Use of a lower resolution analysis  

The inner/outer loop used in 4D-Var was introduced in subsection c), where we showed that a similar 
outer loop can be carried out in EnKF. We now point out that it is common practice to compute the inner 
loop minimization, shown schematically in Figure 4, using a simplified model (Lorenc, 2003), which usually  
has lower resolution and simpler physics than the full resolution model used for the nonlinear outer loop  
integration. The low-resolution analysis correction computed in the inner loop is interpolated back to the full 
resolution model (Figure 4). The use of lower resolution in the minimization algorithm of the inner loop 
results in substantial savings in computational cost compared with a full resolution minimization, but it also  
degrades the analysis. 

Yang et al. (2008b) took 
advantage that in the LETKF the 
analysis ensemble members are  
a weighted combination of the 
forecasts, and that the analysis 
weights Wα  are much smoother 
(they vary  on a much larger 
scale) than the analysis
increments or the analysis fields 
themselves. They tested the idea 
of interpolating the weights but 
using the full-resolution forecast  
model on the same quasi-
geostrophic model discussed
before. They performed full
resolution analyses and
compared the results with a
computation of the LETKF
analysis (i.e., the weight matrix  
Wα) on coarser grids, every  3 by  
3, 5 by  5 and 7 by 7 grid  points,  
corresponding to an analysis
grid coverage of 11%, 4% and 
2% respectively, and with the  
interpolation of the analysis
increments. They found that
interpolating the weights did not  
degrade the analysis compared 
with the full resolution, whereas 

 

 
 
 
 
 

 

 
 

interpolating the analysis increments resulted in a serious degradation (Fig. 6). The use of a symmetric 
square root in the LETKF ensures that the interpolated analysis has the same linear conservation properties 
as the full resolution analysis. The results suggest that interpolating the analysis weights computed on a  
coarse grid without degrading the analysis can substantially reduce the computational cost of the LETKF. 
Although the full resolution ensemble forecasts are still required, they  are also needed for ensemble 
forecasting in operational centers. We note that the fact that the weights vary on large scales, and that the use  
of a coarser analyses with weight interpolation actually improves slightly the analysis in data sparse regions, 
suggesting that smoothing the weights is a good approach to filling data gaps such as those that appear in 
between satellite orbits. (Yang et al. 2008b, Lars Nerger, pers. comm. 2008). Smoothing the weights, both in  
the horizontal and in the vertical may also reduce sampling errors and increase the accuracy of the analyses. 



 

 

 
 

 

 

 

 

  
 
 

   

 

  
 

 
 

 

   
  

 

Fig. 7. Comparison of the analysis error averaged over two months 
for the zonal velocity in the SPEEDY model for several 
simulations with the radiosonde observations available every 
other point. The yellow line corresponds to a perfect model 
simulation with the observations extracted from a SPEEDY 
model “nature run”. The red is the control run, in which the 
observations were extracted from the NCEP-NCAR Reanalysis, 
but the same multiplicative inflation was used as in the perfect 
model case. The blue line and the black solid lines correspond to 
the application of optimized multiplicative and additive inflation 
respectively. The long-dashed line was obtained correcting the 
bias with the Dee and DaSilva (1998) method, and combining it 
additive inflation. The short-dashed is as the long-dashed but 
using the Danforth et al. (2007) low dimensional method to
correct the bias, and the green line is as the long-dashed line but 
using the simplified Dee and DaSilva method. Adapted from Li
(2007). 
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f) Model error  

Model error can seriously affect the EnKF because, among other reasons, the presence of model biases 
cannot be detected by the EnKF original formulation, and the ensemble spread is the same with or without  
model bias (Li 2007). For this reason, the most widely  used method for imperfect models is to increase the 
multiplicative or additive inflation (e.g. Whitaker et al. 2007). Model biases can also be taken into account 
by estimating the bias as in Dee and da Silva (1998) or its simplified approximation (Radakovich et al. 2001).  
More recently, Baek et al. (2007) pointed out that model bias could be estimated accurately augmenting the 
model state with the bias, and allowing the error covariance to eventually correct the bias. Because the bias  
was assumed to be a full resolution field, this required  doubling the number of ensemble members in order to 
reach convergence. 

In the standard 4D-Var, the impact
of model bias cannot be neglected
within longer windows because the
model (assumed to be perfect) is used as  
a strong constraint in the minimization
(e.g. Andersson et al. 2005). Trémolet
(2007) has developed several techniques 
allowing for the model to be a weak
constraint in order to estimate and
correct model errors. Although the
results are promising, the methodology
for the weak constraint is complex, and 
still under development. 

Li (2007) compared several
methods to deal with model bias (Fig. 
7), including a “Low-dimensional”
method based on an independent
estimation of the bias from averages of  
6 hour estimated forecast errors started  
from  a reanalysis (or any other
available good quality analysis). This  
method was applied to the SPEEDY 
(Simplified Parameterizations
primitivE-Equation Dynamics) model
assimilating simulated observations
from the NCEP-NCAR (National
Centers for Environmental Prediction-
National Center for Atmospheric
Research) Reanalysis, and  it was found  
to be able not only to estimate the bias, 

 
 
 

 
 

 
 
 
 

 

 
 

 

 
 
 
 

 

but also the errors in the diurnal cycle and the model forecast errors linearly  dependent on the state of the 
model (Danforth et al. 2007; Danforth and Kalnay 2008). 

The results obtained by Li (2007) accounting for model errors within the LETKF, presented in Figure 7 
indicate that: a) additive inflation is slightly  better than multiplicative inflation, b) methods to estimate and 
correct model bias (e.g. Dee and da Silva 1998; Danforth et al. 2007) should be combined with inflation,  
which is more appropriate in correcting random model errors. The combination of the Low-Dimensional 
method with additive inflation gave the best results, and was substantially better than the results obtained 
assuming a perfect model (Fig. 7). We note that the approach of Baek et al. (2007) of correcting model bias 
by augmenting the state vector with the bias can be used to determine other parameters, such as surface  
fluxes, observational bias, nudging coefficients, etc. It is similar to increasing the control vector in the 



 

 

KALNAY 15 

variational approach, and is only limited by the number of degrees of freedom  that are added to the control 
vector and sampling errors in the augmented background error covariance. 

4. Summary and discussion 

4D-Var and the EnKF are the most advanced methods for data assimilation. 4D-Var has been widely 
adopted in operational centres, with excellent results and much accumulated experience. EnKF is less mature,  
and has the disadvantage that the corrections introduced by observations are done in a space of lower 
resolution, since they depend on the ensemble size, although this problem is ameliorated by the use of 
localization. The main advantages of the EnKF are that it provides an estimate of the forecast and analysis 
error covariances, and that it is much simpler to implement than 4D-Var. Recent “clean” comparisons  
between the operational 4D-Var and EnKF systems in Environment Canada, using the same  model resolution  
and observations, indicated that the forecasts had essentially  identical scores, whereas the 4D-Var using a  
background error covariance based on the EnKF gave a 10-hour improvement in the 5-day  forecasts in the 
Southern Hemisphere (Buehner et al. 2008). 

It is frequently stated that the best approach should be a hybrid that combines “the best characteristics” 
of both EnKF and 4D-Var (e.g. Lorenc 2003). Unfortunately this would also bring the main disadvantage of 
4D-Var to the hybrid system, i.e., the need to develop and maintain an adjoint  model. This makes the hybrid 
approach attractive to operational centres that already have appropriate linear tangent and adjoint models, but  
not otherwise.  

In this review we have instead focused on the idea that the advantages and new techniques developed 
over the years for 4D-Var, can be adapted and implemented within the EnKF framework, without requiring 
an adjoint model. The LETKF (Hunt et al. 2007) was used as a prototype of the EnKF. It belongs to the 
square root or deterministic class of the EnKF (e.g. Whitaker and Hamill 2002) but simultaneously  
assimilates observations locally in space, and uses the ensemble transform approach of Bishop et al. (2001) 
to obtain the analysis ensemble as a linear combination of the background forecasts. We showed how the 
LETKF could be modified to include some of the most important 4D-Var advantages: a no-cost smoothing 
algorithm, useful not only to use “future” (as in reanalysis) but also to accelerate spin-up and handle 
nonlinear, non-Gaussian ensemble perturbations, and how to implement an “outer loop” within the LETKF. 
Taking advantage that the LETKF calculates the analysis weights valid throughout the data assimilation 
window that linearly combine the forecast perturbations to compute the analysis ensemble, we computed the 
LETKF on coarse grids and interpolated the weights to the full resolution grid. Yang et al. (2008) found that 
the weight interpolation from a coarse resolution grid did not degrade the analysis, suggesting that the  
weights vary  on large scales and smoothing them can increase the accuracy of the analysis, and that weight 
interpolation is ideal to fill up analysis data voids. 

One of the most powerful applications of the adjoint model is the ability to estimate the impact of classes 
of observations on the short range forecast (Langland and Baker 2004), and we showed how this “adjoint 
sensitivity” can be computed within the LETKF without an adjoint model (Liu and Kalnay, 2008). Finally, Li 
(2007) compared several methods used to correct model errors and showed that it is advantageous to  
combine methods that correct the bias, such as that of Dee and da Silva (1998) and the low-dimensional 
method of Danforth et al. (2007), with methods like inflation that are more appropriate to account for random  
model errors. This is an alternative to the weak constraint method (Trémolet 2007) to deal with model errors 
in 4D-Var, and involves the addition of a relatively small number of degrees of freedom to the control vector.  
Li et al. (2008) also developed a method to optimally estimate both the inflation coefficient for the 
background error covariance and the actual observation error variances (not shown here). 

In summary, we have emphasized that the EnKF can profit from  the methods and improvements that 
have been developed in the wide research and operational experience acquired with 4D-Var. Given that 
operational tests comparing 4D-Var and the LETKF indicate that the performance of these two methods is  
already very close (e.g. Miyoshi and Yamane 2007, Buehner et al. 2008), and that the LETKF and other 
EnKF methods are much simpler to implement, their future looks bright.  
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1. Introduction 

Several studies have suggested a relationship between tropical cyclone activity in the eastern Pacific and 
Atlantic basins and the Madden-Julian Oscillation (MJO; Maloney and Hartmann 2000a, b; Higgins and Shi 
2001). This relationship is attributed to the ability of the MJO to impact the atmospheric circulation, making 
the large-scale environment more or less favorable for tropical cyclone development. In two separate studies, 
Maloney and Hartmann (2000a, b) find a strong relationship between the MJO and tropical cyclone activity in 
the eastern Pacific, Gulf of Mexico, and 
Caribbean. They found that tropical cyclone 
activity is increased significantly in these 
regions when the MJO-related convection is in 
the Indian Ocean and associated westerly low-
level wind anomalies are present across the 
eastern equatorial Pacific. These anomalous 
winds set up a region of large-scale cyclonic 
low-level vorticity and reduced wind shear 
over these regions, two conditions that are 
favorable for the development of tropical 
cyclones. The opposite conditions exist when 
MJO-related convection is located over the 
western equatorial Pacific and associated 
easterly anomalies in low-level winds are 
present over the eastern equatorial Pacific 
resulting in less favorable conditions for 
tropical cyclone development.  

A study by Higgins and Shi (2001) 
investigates the variability of Northern 
Hemisphere warm season precipitation and 
corresponding large-scale circulation in the 
CPC merged analysis of precipitation and 
NCEP/NCAR Reanalysis data. In this study, 
they find that there is evidence that the MJO 
modulates tropical cyclone activity by 
collocating tropical storm and hurricane 
origination points during the peak months of 
the Atlantic hurricane season (JAS) with 200 
hPa velocity potential composited by MJO 
phase. This analysis indicates that the 
strongest tropical cyclones tend to form when 
the MJO favors enhanced precipitation in that 
region. This is characterized by large-scale 
divergence associated with large-scale ascent. 

Correspondence to: Kathy Pegion, NOAA/ESRL/PSD, CIRES Climate Diagnostics Center, Boulder, Colorado 
E-mail: Kathy.Pegion@noaa.gov 

Fig. 1  (a)-(d) NCEP Reanalysis-2 Jun-Nov climatology and 
standard deviation of SGP & GPI.  (e) All tropical 
storm formations from the Hurricane Best Track 
Database 1979-2007. by their respective standard 
deviations, based on 18 years of data, at each grid point. 
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These studies indicate that the MJO 
impacts the large-scale circulation, 
making the environment more or less 
favorable for the development of tropical 
cyclones on subseasonal timescales, 
specifically in terms of the dynamics (i.e. 
low-level vorticity and vertical wind 
shear). In the current study, we further 
investigate this relationship by using a 
commonly used index of MJO activity 
and indices that quantify whether the 
environment is favorable or unfavorable 
for tropical cyclone activity. Furthermore, 
we quantify this relationship using the 
technique of mutual information. 
Additionally, we investigate whether the 
NCEP operational climate model can 
capture the observed relationship and 
offer implications for prediction of 
tropical cyclone activity on subseasonal 
timescales.   

2. Data and indices 

a) MJO index 

The all season real-time multivariate 
MJO (RMM) index of Wheeler and 
Hendon (2004) is used as a measure of 
MJO activity. These data were obtained 
from the Bureau of Meteorological 
Research Centre website and are 
available for the dates June 6, 1974 -
December 31, 2007. The index is based 
on combined EOFs of equatorial zonal 
wind at 200 hPa, zonal wind at 850 hPa, 
and outgoing longwave radiation. These 
data are limited by the extent of the OLR data from the NOAA AVHRR satellite. We use the version of the 
index in which the interannual variability related to ENSO has been removed. The first two principal 
component timeseries (hereafter referred to as RMM1 and RMM2) are in quadrature and together represent a 
measure of MJO both in terms of phase and amplitude. 

b) Hurricane indices 
Two indices are used to represent hurricane activity: the seasonal genesis parameter (SGP; Gray 1979) 

and the genesis potential index (GPI; Emanual and Nolan 2004). These indices were originally designed to 
represent the large-scale, climatological locations favorable for tropical cyclone development. However, it is 
reasonable to assume that they are capable of representing large-scale regions where hurricane activity is 
favorable on other timescales provided the data used contains the necessary variability. Here, we apply the 
SGP and GPI to subseasonal variability of hurricane activity by calculating both indices using daily data from 
NCEP/NCAR Reanalysis (R2) for the years 1979-2007.  

The SGP is the product of low-level (925hPa) absolute vorticity, inverse of the shear between 925 hPa 
and 200 hPa, relative humidity between 700 hPa and 500 hPa, moist stability in the layer between 1000 hPa 
and 500 hPa, and thermal energy in the layer between the surface and 60 meters based on a threshold 
temperature of 26 degrees C. The climatological values of SGP are calculated for the Atlantic and eastern 

Fig. 2  Composite OLR anomalies by MJO phase for 
observations (left) and CFS (right). 
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Pacific and averaged over the hurricane 
season of June through November 
(Figure 1a). The actual initiation points 
of tropical storms formed based on the 
best track hurricane database for the 
years 1974-2007 are also shown (Figure 
1e). The climatological SGP shows the 
well-known climatologically favored 
regions for tropical cyclone development. 
For example, the larger values of SGP 
indicate that the eastern Pacific along the 
coast of Central America is the most 
favored region for tropical cyclones to 
develop. This is consistent with the 
actual formation of tropical cyclones 
seen in Figure 1e. Additionally, the 
region referred to as the main 
development region (MDR) in the 
Atlantic is also apparent and consistent 
with the tropical storm formation in the 
eastern Atlantic. It is also apparent that 
the Caribbean, Gulf of Mexico, 
southeastern coast of the United States, 
and Pacific out to the dateline are 
climatologically favored regions for 
tropical cyclone development based on 
both the SGP and the historical tropical 
cyclone formations. The standard 
deviation of SGP (Figure 1c) shows that 
the regions of highest SGP are also the 
regions with the largest variability. The 
GPI is the product of low-level (850 hPa) 
absolute vorticity, relative humidity at 
700 hPa, shear between 200 hPa and 850 
hPa, and the potential wind intensity that 
could be obtained if a tropical system 
developed. The details of the calculation of potential intensity can found in Emanual and Nolan (2004). The 
potential intensity combines much of the same information contained in the ocean thermal energy and 
moisture stability terms in the SGP, but avoids the need to use a fixed threshold value for temperature. The 
climatological values of GPI and its standard deviation are calculated and averaged over the hurricane season 
(Figure 1b,d). The climatologically favored regions for tropical cyclone development are consistent with those 
calculated by SGP and by historical development including the dominance of the eastern Pacific, the MDR in 
the Atlantic, the Gulf of Mexico and east coast of the United States. The standard deviation again shows that 
the regions with the largest mean also have the largest variability. The most obvious difference between SGP 
and GPI are the non-zero values of GPI that extend from 30°N to 50°N in both basins. These differences are 
due primarily to the 26°C threshold in temperature used in the SGP calculation since SSTs are typically 
colder than 26°C this far north, the SGP is zero in these regions.  

3. Observed relationship between the MJO and hurricane activity 

In this section, we investigate this relationship using the SGP and GPI indices calculated from Reanalysis 
and compare with historical hurricane activity. Specifically, we attempt to quantify the relationship between 

Fig. 3  Composite SGP (left) and GPI (right) by MJO phase 
calculated from NCEP Reanalysis. Locations of tropical storm 
formations are also shown (green triangles). 
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the MJO and tropical cyclone activity in terms of the 
hurricane indices in order to assess some 
implications for using the MJO to predict periods of 
increased or decreased probability of tropical 
cyclone activity. 

In order to provide a reference for identifying 
the phase of the MJO and the relationship with 
hurricane activity, we first calculate composite MJO 
events by phase for the observed NOAA/AVHRR 
OLR during the Atlantic hurricane season (Jun-Nov). 
First, a five-day running mean is applied to the OLR 
data to remove short timescale weather variations. 
Then, the anomalies are determined by removing an 
average annual and semi-annual cycle. A MJO event 
is determined to occur when the amplitude of 
RMM1 and RMM2 is greater than one. The 
anomalous OLR is averaged for each phase of the 
MJO to calculate a composite MJO event (Figure 2a). 
In phase one, enhanced convection indicated by 
negative OLR anomalies are present over the 
Western Hemisphere and off the coast of Africa in 
the westernmost part of the Indian Ocean. The 
anomalies propagate eastward and increase in 
amplitude in the Indian Ocean during phases two 
and three, then across the Maritime Continent during 
phases four and five. In phases six, the convection 
moves into the western Pacific Ocean, then north 
and eastward in phase seven. By phase eight, the 
convection is located over central America. The 
corresponding region of suppressed convection is 
also present and propagates eastward ahead of the 
region of enhanced convection. It is also important 
to point out the convective anomalies near the 
Americas associated with the MJO. For example, 
phases 1 and 8 have enhanced convective anomalies in this region while phases 4 and 5 have suppressed 
convective anomalies in this region. 

We now assess the SGP and GPI indices by MJO phase in both the Atlantic and eastern Pacific in order to 
understand the relationship between the MJO and tropical cyclone activity. SGP and GPI are both calculated 
using full fields that have had a 5-day running mean applied. Additionally, the linear regression with Nino 3.4 
has also been removed in order to remove the impacts of ENSO on the calculations. The anomalous SGP and 
GPI are determined by removing the average combined annual and semi-annual cycle for the years 1979-2007. 
The composite anomalies of SGP and GPI are calculated over the eight MJO phases for the months of Jun-
Nov (Figure 3). Positive (negative) values indicate that the region is more (less) favorable for development of 
tropical cyclones. Both the SGP and GPI appear to have a strong signal based on MJO phase in the eastern 
Pacific and Caribbean and a weaker signal in the eastern Atlantic. 

Apparently, conditions are more (less) favorable for development during phases eight, one, and two 
(three, four, five, and six) in the eastern Pacific and Caribbean. It is also apparent that the relationship 
between the MJO and the conditions for hurricane activity in the eastern Pacific is consistent with the 
relationship in the Caribbean and Gulf of Mexico. These results are consistent with those of Maloney and 
Hartmann (2000a,b). The historical development of tropical storms is also shown (green diamonds). These 
data are generally consistent with the SGP and GPI regions of more or less favorable conditions based on 

Fig. 4 Mutual information for SGP (top), random 
SGP mutual information (middle), and 95% 
significance for SGP mutual information 
(bottom). 
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MJO phase with the exception of some regions of 
negative SGP and GPI anomalies in the eastern 
Pacific in phases three, four, and five. Perhaps these 
regions are strongly climatologically favored and the 
anomalies associated with the MJO have little 
impact. 

Next, we quantify this relationship using the 
method of mutual information. The mutual 
information between a hurricane index and the MJO 
index is calculated as a measure of the null 
hypothesis that the hurricane index and the MJO 
index are independent. The formula for the 
calculation is given as: 

HurIndex, MJOM = ∑ PHurIndex, MJO log 
P 

. 
HurIndex = 3, MJO = 9 PHurIndex PMJO 

If the hurricane index and the MJO index are 
independent, then the mutual information between 
the two will be zero. The RMM MJO index consists 
of eight MJO phases and a null phase for a total of 
nine possible phases. The hurricane indices are 
divided into terciles. Therefore, the summation in 
the calculation of mutual information occurs over 
twenty-seven possible cases. The mutual 
information between the SGP and the MJO index 
are shown in Figure 4 (top) and for GPI and the 
MJO index in Figure 5 (top). For the SGP, the 
largest values for the mutual information are located 
in the eastern Pacific. This is consistent with the 
changing values of SGP by MJO phase in the Fig. 5  Same as Fig 4, but for GPI. 
composites in this region. For the GPI, the values are 
almost constant throughout the region. It is surprising that the mutual information values are so different for 
the GPI compare to the SGP considering that the composites are very similar for the two. To determine if the 
value calculated for the mutual information is statistically significant from zero, the mutual information is 
recalculated with the joint probability between the hurricane index and the MJO index calculated by taking a 
different, random year for the hurricane index. This calculation is performed one-thousand times and the 
values are ordered. The 95th percentile for the mutual information is shown in Figure 4 (middle panels). 
Where the value for the mutual information exceeds the 95th percentile, it is considered to be statistically 
significant from zero and the null hypothesis can be rejected (Figure 4, bottom panels). Clearly for SGP, the 
mutual information values are significant in the eastern Pacific. For GPI, significant values are found 
throughout the region, but there is little spatial structure present. 
4. Simulation of the relationship between MJO and hurricane activity in the CFS 

The ability of the NCEP operational climate model to simulate the relationship between MJO and tropical 
cyclone activity is also investigated. Here, we compare composites of SGP and GPI from the CFS with those 
from the reanalysis products discussed in section 3 and calculate the mutual information between the 
hurricane indices and the MJO to see if the model captures the observed relationship. 

a) Model description 
The CFS is the fully coupled atmosphere-ocean general circulation model used operationally by NCEP 

for climate forecasts. It is composed of the NCEP Global Forecast System 2003 (GFS) as the atmospheric 
component and the Geophysical Fluid Dynamics Laboratory (GFDL) Modular Ocean Model version 3 
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(MOM3; Pacanowski and Griffies 1998) 
as the oceanic component. The version of 
the GFS used in this study has a 
resolution of T62 in the horizontal and 64 
layers in the vertical. The ocean model 
has a quasiglobal domain ranging from 
74°S to 64°N latitude. It has 40 layers in 
the vertical and a resolution of 1/3°x1° in 
the tropics and 1°x1° in the extratropics. 
The atmosphere and ocean exchange 
fluxes and sea surface temperatures once 
per day without flux correction. The sea 
ice extent is taken as climatology. For a 
more detailed description of this version 
of the CFS, see Saha et al. (2006) and 
Wang et al. (2005). 

Since the model is relatively coarse 
resolution, there is no expectation that the 
model could accurately develop 
hurricanes. Therefore, we use the SGP 
and GPI indices as indicators of when the 
model simulates conditions that are 
favorable for the development of tropical 
cyclones. The RMM index, SGP and GPI 
are calculated using daily data from a 52-
year, freely coupled simulation of the 
CFS. The simulation is initialized on Jan 
1, 1985, and run for 52 years. The initial 
conditions for the atmosphere are from 
the NCEP Reanalysis-2. The ocean is 
initialized from the Global Ocean Data 
Assimilation System (GODAS). 

b) Simulation of the MJO by the CFS 
The simulation of the MJO by the CFS has been assessed extensively in Pegion and Kirtman 2008. They 

found that the model is generally able to simulate regions of enhanced and suppressed convective anomalies 
and the eastward propagation. However, the model has difficulty with the exact locations of the maximum 
and minimum anomalies, tends to be too strong, and propagates the anomalies slower than observed. Here, we 
summarize the simulation and emphasize the associated enhanced and suppressed convective anomalies in the 
eastern Pacific and Atlantic basins. 

The RMM MJO index has been calculated for the 52-year CFS simulation following the same method as 
Wheeler and Hendon (2004). Composite OLR anomalies by the model MJO phase are shown in Figure 2b. 
Consistent with the results of Pegion and Kirtman 2008, large-scale OLR anomalies propagate eastward from 
the Indian Ocean and out to the dateline. Strong anomalies are also apparent in the eastern Pacific, off the 
coast of Mexico and Central America. These anomalies are generally much stronger than those from the 
observations and the phasing appears to be off somewhat in the CFS. Despite the deficiencies in the 
simulation, the CFS is able to capture the overall features of the OLR associated with the MJO. Therefore, it 
is possible that the model can simulate the relationship between the MJO and the hurricane indices. 

c) SGP and GPI 
The hurricanes indices, SGP and GPI, have been calculated for the CFS simulation using the same 

method described in section 2. The climatological values of SGP and GPI for the CFS (not shown) have 

Fig. 6  Same as figure 3, but for CFS. 
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patterns generally consistent with those calculated 
from R2 and with the historical locations of tropical 
cyclone formations; however the CFS is generally 
too strong. The standard deviations (not shown) for 
both indices are also consistent in pattern, but too 
strong compared to R2. 

Composites of SGP and GPI are also calculated 
by model MJO phase (Figure 6). The model 
composites are consistent with the composites 
calculated using R2 (Figure 3) and ERA40 (not 
shown). For example, the SGP and GPI indices are 
positive in the Caribbean and Gulf of Mexico 
regions during phases eight, one, and two and 
generally negative in these regions during phases 
four and five. The SGP and GPI values are generally 
larger in the CFS than in R2. 

Furthermore, we also calculate the mutual 
information between the hurricane indices and the 
MJO in the model following the same method 
described previously. The mutual information 
between the MJO index and the hurricane indices 
along with the 95th percentile calculations of the 
mutual information are shown in Figures 7 and 8. 
The mutual information between SGP and MJO 
index and GPI and MJO index are significantly 
different from zero in the eastern Pacific region. 
This indicates that the model is able to capture the 
observed relationship, but that a significant 
relationship is only present in the eastern Pacific. 
This is somewhat disappointing considering that 
there also appeared to be a relationship in the Gulf of 
Mexico region as well. Future work will assess 
whether these indices should be modified to be more appropriate for subseasonal timescales. 

5. Summary and implications for subseasonal forecasts of tropical cyclone activity 

The relationship between the MJO and tropical cyclone activity is assessed in terms of the ability of the 
MJO to change the large-scale environment, making it more or less favorable for tropical cyclone 
development. This relationship is assessed using two hurricane indices that have traditionally been used to for 
seasonal and climatological tropical cyclone development. Additionally, we have used these indices to assess 
whether the NCEP operational climate model can capture this relationship. We use the method of mutual 
information to quantify whether there is a relationship. Our results indicate that there is a statistically 
significant relationship in the eastern Pacific. Future work will attempt to determine if an index more 
appropriate for subseasonal variability can be determined. Furthermore, this work only quantifies the 
relationship between the hurricane indices and MJO. A relationship between the MJO index or the hurricane 
indices with tropical cyclones has not yet been established and is the subject of future work. 

Because of the slowly evolving nature of the MJO, the composites of SGP and GPI may be useful for 
prediction purposes, specifically in the eastern Pacific where a statistically significant relationship between 
the hurricane indices and MJO index has been found. If it is known that the MJO is active and what phase it is 
in, the fact that it propagates eastward slowly allows these composites to be used to make forecasts for the 
next couple of phases. This kind of forecasting is already being used at the Climate Prediction Center to make 
forecasts on one to two week timescales as part of the Global Tropical Hazards product. However, since these 

Fig. 7  Same as Fig 4, but for CFS. 
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composites only represent some averaged common 
behavior of the SGP and GPI related to the MJO and 
do not contain the interaction with other types of 
variability, it would be ideal to be able to use 
dynamical models to make actual forecasts of SGP 
and GPI. This work has established that the CFS is 
able to simulate the observed relationship between 
the hurricane indices and the MJO index relationship. 
Future work will assess its skill in forecasting these 
indices. 
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A series of experimental forecast runs with the NCEP Climate Forecast System (CFS) coupled GCM was 
made to examine the feasibility of dynamical hurricane season prediction as one of the Climate Test Bed 
internal projects in 2007/2008. A series of 7-month forecast experiments with the initial conditions in mid-
April during 1981-2008 were made in T382 spectral resolution to evaluate tropical storm statistics in the CFS 
at the highest possible spatial resolution. This is a preliminary report based on the experimental runs and a set 
of CFS runs in the T62, T126 and T382 resolutions initialized at 0Z, May 15 for 1981-2008.   

Tropical storms in the CFS 
runs were identified using the 
tropical storm detection method 
devised by Carmago and Zebiak 
(2002). Storms depicted in the 
CFS have very realistic tracks in 
all four basins in the Northern 
Hemisphere (Fig. 1) and a robust 
s e a s o n a l  c y c l e  ( F i g .  2 a ) .  
Comparisons of  interannual  
variability in storm activities (Fig. 
2b) indicate that the CFS has a 
reasonable skill and captures the 
shift to more active storm era in 
the Atlantic basin during the post-
1995 period. Two environmental 
variables that control interannual 
variability in storm activity over 
the Atlantic basin are sea surface 
temperature (SST) and vertical 
w i n d  s h e a r  o v e r  t h e  m a i n  
development region. The T382 

 
Fig. 1 Examples of tropical storm tracks over the four basins in the 

Northern Hemisphere depicted in one of CFS hindcast runs. Each 
color represents an individual storm. 

(a) (b) 

 

        
 

  

Fig. 2 Climatological seasonal cycle (left panel, a) and interannual variability of tropical storms (right panel, 
b) for the Atlantic basin. Black lines and black bars correspond to seasonal cycle and number of storms 
based on observations over the 1981-2008 period, and blue lines and blue bars are for those from CFS 
hindcast ensemble runs. Straight lines in the right panel represent linear trends over the period. 
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CFS has shown a fair level of skill in predicting these environmental conditions over the region (Figs. 3 and 
4).  A preliminary analysis of bias of storm origins in the CFS hindcasts indicates that over the Atlantic basin,  
more storms  tend to form  over the Main Development Region (MDR, 20W-80W, 10N-20N) and that fewer 
storms form  over the Gulf of Mexico and along the east coast of US (Fig. 5).  The primary factor controlling 
storm formation is found to be the vertical wind shear over the basin. Compared to observations, the CFS  
hindcasts have weaker shear bias over the MDR and stronger bias over the Gulf of Mexico and the Atlantic 
north of 20N (Fig. 5c).    

 
   

 

Fig. 3  Interannual variability of JJA SST index over the Atlantic Main Development Region (20ºW-80ºW, 
10ºN-20ºN) and anomaly correlation scores of each ensemble member and the ensemble mean. Black 
line corresponds to the SST index based on the NCEP OI SST analysis and blue lines to the index from 
CFS hindcast runs. 

  
 

Fig. 4  Interannual variability of JJA wind shear index over the Atlantic main development Region (20ºW-
80ºW, 10ºN-20ºN) and anomaly correlation scores of each ensemble member and the ensemble mean. 
Black line corresponds to the shear index based on the NCEP/DOE Reanalyis-2 and blue lines to the 
index from CFS hindcast runs. 

  Fig. 5 JJA tropical storm origins (black square) and climatological vertical wind shear (shaded) from 
observations (a) and CFS hindcast runs (b). Right panel shows wind shear bias and the storm origins 
in the CFS (c). 
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Companion experiments with the CFS in T62 and T126 resolutions were also conducted to investigate the 
impact of spatial resolution on storm statistics. The structure and intensity of storms in the lower resolution 
runs did not compare so well to the observed as in the T382 cases. However, the computing resources needed 
for routine operation of the T382 CFS are very large in the current computing environment. The T126 
resolution might be a good compromise in view of the relatively comparable number of storms generated and 
the advantage of adopting a multi-member ensemble approach.   

Reference 
Carmago, S. J. and S. E. Zebiak, 2002: Improving the detection and tracking of tropical cyclones in 

atmospheric general circulation models.  Weather and Forecasting, 17, 1152-1162. 
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1. Introduction 

The systematic errors of CGCMs have a profound influence on the capability of theses climate models to 
simulate the fluctuations of the tropical climate. Therefore, the characteristics of systematic errors are a 
fundamental issue in studies of the limit of predictability of the coupled ocean–atmosphere system. Forecast 
errors depend on a given model’s characteristics, in particular, after the influence of the initial conditions 
fades out with respect to lead time in a forecast (Jin et al. 2008; Jin and Kinter 2009). Focusing on the tropical 
SST predictability, model errors associated with the El Niño and the Southern Oscillation (ENSO) mechanism 
may have a strong impact.   

Different from the definition of conventional El Niño which is as a phenomenon in the equatorial Pacific 
Ocean characterized by a positive sea surface temperature departure from normal in the Niño -3.4 region (i.e., 
5°S–5°N, 170°–120°W) greater than or equal in magnitude to 0.5°C averaged over three consecutive months 
(National Oceanic and Atmospheric Administration), there have been several studies to define the different 
flavors of El Niño (or ENSO) (Trenberth and Stepaniak, 2001; Larkin and Harrison 2005; Ashok et al. 2007; 
Guan and Nigam, 2008; Kao and Yu 2009). Even though there are differences among studies, the distinctive 
interannual SST variation over the central Pacific which becomes more active in recent years and significantly 
different global impact from conventional El Niño are common features. Recently, Kug et al. (2009) shows 
that the transition mechanisms and dynamical structure of two-types of El Niño are significantly different. 

The main objective of this study is to investigate the predictability of different flavors of ENSO in the 
state-of-the-art CGCMs. Based on previous definitions, CGCM’s ability to predict the distinguishable 
characteristics of two types of El Niño is investigated using two state-of-the-art CGCMs retrospective 
forecasts dataset. The ensemble forecasts of the tropical Pacific in 2 CGCMs have been compared with each 
other and with observations. 

2. Data and model  

Two retrospective forecast data set of NCEP CFS (Saha et al. 2006) and FRCGC/SINTEX-F (Luo et al. 
2005) are used. A set of retrospective ensemble forecast data set of NCEP CFS was created by running a 9-
month integration of 15 members for each of the 12 calendar months in the 27 years from 1981 to 2007. A set 
of ensemble forecast with 9 members of FRCGC/SINTEX-F was created by running a12-month integration 
for each of the 12 calendar months in the 26 years from 1982 to 2007. Note that forecast data used here is 
reconstructed with respect to lead time using all data starting from 12 calendar months to focus on the change 
of predictability with respect to lead month. The initialization processes of two models are independent. With 
these retrospective forecasts, a 52-year of NCEP CFS and 200-year of SINTEX-F long run were analyzed to 
investigate the characteristics of model error.   

In this study, SST is mainly used as the variable which represents the coupled system. For comparison 
with observation, the Optimum Interpolation Sea Surface Temperature (OISST) analyses dataset (Reynolds 
and Smith 1994) created by the Climate Prediction Center (CPC) of the National Centers for Environmental 
Prediction (NCEP) is used. 

3. Two flavors of El Niño and its predictability 

The definition of two types of El Niño is as follows. El Niño events show stronger SST anomalies over 
the eastern Pacific, and it is elongated to the central Pacific, we will refer these El Niño events to Cold tongue 

Correspondence to: Emilia K. Jin, Center for Ocean-Land-Atmosphere Studies, 4041 Powder Mill Road, Suite 302, 
Calverton, MD 20705; E-mail: kchin@gmu.edu 
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(CT) El Niño. The SST
pattern of CT El Niño is
quite similar to that of
conventional El Niño
(Rasmusson and Carpenter
1982; Harrison and Larkin 
1998; Kug et al. 2009).
Unlike CT El Niño events,  
some El Niño events have 
larger SST anomalies over 
the central Pacific, while the 
eastern Pacific SST is small 
but still positive. Hereafter,  
we will call these El Niño 
events as Warm Pool (WP)  
El Niño events. Both El
Niño shows different
rainfall patterns which
induce different global
impact. The CT El Niño is  
characterized by relatively 
large SST anomalies in the
NIÑO3 region (5ºS–5ºN,
150º–90ºW), while the  WP 
El Niño is associated with 
SST anomalies mostly
confined to the NIÑO4
region (5ºS–5ºN, 160ºE–
150ºW). During 1981 to
2006, this is the individual 
case of three categories. The 
82-83 and 1997-98 events 
are CT El Niño and the 
1990-91, 1994-95, 2002-03,  
and 2004-05 events are WP 
El Niño. There are three  
more events, which have
features between the CT and 
WP El Niño events: the
1986–88 and 1991–92
events. 

The predictability  of
individual case of CT and 
WP El Niño is considered. 
In the case of forecast lead  
month 1 (not shown), both 
models show quite good
accordance with observed
pattern. Comparing two
models, CFS tend to underestimate the magnitude of anomalies more than SINTEX. Figure 1 shows the 
individual case of CT and WP El Niño at the forecast lead  month 6. In this plot, the contour is for observation 
and the shading is for model forecast. It looks that models reproduce the CT El Niño better than WP El Niño.  

 
 

 

Figure 1. Observed and simulated DJF SST anomalies of WP and CT El Niño 
cases at the forecast lead month 6. (a) CFS WP El Niño, (b) CFS CT El 
Niño, (c) SINTEX-F WP El Niño and (d) SINTEX-F CT El Niño. Solid line 
denotes observation and shading denotes model. 

Figure 2.  WP, CT and mixed El Niño composite of SST anomalies along the  
equator at the forecast lead  month 7. Solid line denotes observation and 
shading denotes composite bias of model forecast by subtracting  
observation from  model forecast. (a) CFS and SINTEX-F WP El Niño, (b) 
CFS and SINTEX-F CT El Niño and (c) CFS and SINTEX-F mixed El  
Niño. 
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Figure 3. The scatter diagram of normalized NIÑO3 and NIÑO4 
index. Upper panels show CFS and SINTEX-F at the forecast
lead month 1 and lower panels show CFS and SINTEX-F at 
the forecast lead month 7. Black circle is for observation, red 
circle is for model and WP and CT cases denotes as cross and 
x, respectively. 
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The differences of magnitude of SST 
anomalies can be one factor because CT 
El Niño is stronger than WP El Niño in 
general. 

To describe the distinctions in 
characteristics of CT and WP El Niño 
events and its predictability, a composite 
analysis is performed. The ensemble 
mean of forecast data is reconstructed 
with respect to lead month and then WP, 
CT and mixed El Niño events 
composites are calculated. Figure 2 
shows the bias composite along the 
equator at the forecast lead month 7. The 
contour denotes observed composite and 
the shading denotes error composite of 
model forecast from observation. 
Observed composites show distinctive 
centers of action for CT, WP and mixed 
El Niño, respectively. Interestingly, both 
models commonly underestimate the 
SST anomalies over the center of action, 
where the maximum positive SST 
anomaly is shown in observation. 
Negative bias is shown in the warm pool 
region for WP El Niño and negative bias 
is shown in the cold tongue region for 
CT El Niño. As a result, the sign of 
model error is opposite of that of 
observed SST anomaly. The errors of 
mixed case of El Niño are relatively 
small. Regardless of the independency 
of dynamics, physics and initialization 
process of two models, similarity of 
forecast errors at long forecast lead month in CT and WP El Niño is very intriguing. 

Focusing on the NIÑO indices, the normalized interannual variability of NIÑO3 and NIÑO4 index with 
respect to lead month is calculated (not shown). Even though the detailed forecast skill has differences in two 
models, their tendency looks similar. With respect to increase of lead month, models tend to simulate the 
regular amplitude of two indices and the difference of two indices gets smaller. 

Figure 3 is the scatter diagram of normalized NIÑO3 and NIÑO4 index. Black circle is for observation, 
red is for model forecast, and WP and CT cases are shown as cross and x, respectively. The X axis is NIÑO3 
SST anomalies and the y-axis is NIÑO4 SST anomalies. The dashed green line is the indication of linearity 
between two indices. In observation, it is shown that CT El Niño events are clear outliers from linear 
relationship and WP El Niño events also show somewhat nonlinear relationship between NIÑO3 and NIÑO4 
SST anomalies. This is reasonable considering the definition of CT and WP El Niño. In the case of forecast 
lead month 1 (upper panels), both models show good accordance with observed relationship as expected. At 
forecast lead month 7 (lower panels), red circles shows that the nonlinear relationship between two indices 
almost gets disappeared. Different from observation, their relationship looks very linear in model forecast. 

The correlation coefficient between NIÑO3 and NIÑO4 index is 0.69 in observation. At the forecast lead 
month 1, the correlation coefficient in SINTEX-F indicates 0.73 and CFS indicates 0.77 and it is well 
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matched with the fact that SINTEX-F shows small forecast error. However, models show increase of 
relationship with respect to increase of lead month. Models show the increase of relationship to 0.9 and it is 
associated with drop of forecast skill. 

These results indicate that the centers of action of two models in each case of CT and WP El Niño tend to 
move close to the mixed mode with respect to the increase of lead month. In the previous study, we showed 
that model’s error associated with ENSO dynamics which is different from observation degrades the ENSO 
forecast skill despite of the advantageous impact of initial condition (Jin and Kinter 2009). Hence, common 
ENSO forecast errors of two CGCMs at the long lead month can be associated with common errors of ENSO 
dynamics in CGCMs. To distinguish a given model’s problematic features away from the influence of initial 
conditions, the analysis of ENSO characteristics in long simulations made with the coupled GCMs that are 
used for operational SST forecasting can be useful. To investigate the relationship between long run behavior 
and model forecast error, 52-year long run of CFS and 200-year long run of SINTEX-F are used. 

 
 

 
Figure 4. The scatter diagram of normalized NIÑO3 and NIÑO4 index. Right panel shows observation 

(ERSST and OISST), middle panel shows CFS long run, and left panel shows SINTEX-F long run. 

The scatter diagram of normalized NIÑO3 and NIÑO4 index of long run is shown in Figure 4. Blue  
shading area denotes CT El Niño and red shading area denotes WP El Niño, respectively. In both models, 
most of El Niño events occurred show linear relationship between NIÑO3 and NIÑO4 index suggesting that 
most of El Niño events are close to the mixed mode. Overall, the correlation coefficient between NIÑO3 and 
NIÑO4 index is higher than observation as 0.82 in CFS and 0.86 in SINTEX-F. It suggests that CGCMs have 
common flaw having monotonic flavor of El Niño and fail to reproduce the complexity in nature. This defect  
is also associated with the failure of distinguished forecast of different flavors of El Niño, in  particular at the 
long lead month. 

4. Concluding remarks 

In two state-of-the-art CGCMs, the forecast skill of El Niño is investigated focusing on two flavors of El  
Niño, which are cold-tongue (CT) and warm-pool (WP). As the lead month of forecast increases, the models 
fail to distinguish between two flavors  of El Niño. Both models have difficulties to reproduce the nonlinear 
relationship between NIÑO3 and NIÑO4 SST anomalies at the long lead forecast month. This problematic  
feature is related with the forecast skill of ENSO. 

Among several factors to limit the predictability  of ENSO in coupled models, model flaw is one of most 
dominant problems to degrade the forecast skill. From the long run, it is found that models commonly tend to 
simulate monotonic flavor of El Niño which is close to the mixed mode rather than CT and WP El Niño. This 
is one of the common errors of two CGCMs associated with drop of ENSO forecast skill at the long lead 
month of retrospective forecasts. This common flaw in models suggests that the distinctive transition 
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mechanism associated with the spatial structure of SST and the relative importance of advective and 
thermocline feedbacks between the two types of El Niño in nature (Kug et al., 2009) is not reproduced in 
models. Further analysis will be needed to verify this point of view. 

The predictability of El Niño on seasonal time scales is important because of the associated global-scale 
climate anomalies of precipitation and near-surface air temperature (Ropelewski and Halpert 1987; Trenberth 
et al., 1998; Mason and Goddard 2001). The different pattern of the anomalous convection can lead to 
difference of the atmospheric circulation, and one may expect distinctive teleconnection of two El Niño 
events because the tropical precipitation is a key source of the extra-tropical teleconnections. Further research 
will focus on the tropical precipitation and teleconnection anomalies associated with two flavors of El Niño 
and its predictability. 

Acknowledgements. Thanks to Drs. Fei-Fei Jin, J.-S. Kug, James L. Kinter, J.-J. Luo and T. Yamagata. Also, 
a special thanks to NCEP Environmental Modeling Center (EMC) for providing NCEP CFS data. 
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Abstract 
This paper describes the concept of seamless prediction and its evolution during the establishment of 
the COPES (Coordinated Observation and Prediction of the Earth System) framework of the World 
Climate Research Program (WCRP), where the concept was first presented in 2005. 

1. Introduction 
There is considerable historical evidence that major scientific and technical discoveries are often followed 

by the creation of institutions that can take advantage of those discoveries for the betterment of society. The 
breakthrough in our understanding of atmospheric dynamics that was developed during and after the Second 
World War, accompanied by the technological breakthrough of fast automatic computing devices, led to the 
rapid development of numerical weather prediction, a capability that has been institutionalized by many 
governments around the world and commercialized into a multi-billion dollar enterprise worldwide. 

A second example is the development of our scientific understanding of chaos in nonlinear dynamical 
systems and the potential for predictability at seasonal time scales in the midst of that chaos. The application 
of that capability for seasonal climate prediction led to the creation of a number of institutions for dynamical 
seasonal prediction and research. 

Now we have before us, thanks to the Intergovernmental Panel on Climate Change (IPCC), a third 
discovery: humans are affecting the Earth’s climate. Beyond IPCC, this discovery will inevitably lead to the 
establishment of new institutions, or a transformation of current institutions, whose goal will be to help the 
peoples, governments and corporations of the world manage the consequences of climate change wisely, 
economically and effectively. 

In this paper we present an outline of the emerging paradigm of seamless prediction of weather and 
climate and present a strategy to revolutionize weather and climate prediction. There is no scientific basis to 
draw artificial boundaries between meso-scale prediction, synoptic scale prediction, seasonal prediction, 
ENSO prediction, decadal prediction and climate change. However, practical considerations of computing and 
of model complexity may require different prediction systems for different time scales. The simulation and 
prediction of meso-scale systems, synoptic scale disturbances, intra-seasonal, seasonal and inter-annual 
variations are intimately linked, and therefore, it is suggested that future research on prediction of weather and 
climate be carried out in a unified framework. 

For reliable prediction of regional climate change it is essential that climate models accurately simulate 
the modes of natural variability from diurnal to seasonal and decadal. Utilization of the insights gained from 
operational weather and seasonal prediction, and of the synergy between the weather and climate prediction 
communities is essential for the development of next-generation seamless prediction systems. 

One of the scientific implications of the seamless framework is that decadal and multi-decadal prediction 
using IPCC class models should correctly initialize the state of the ocean-land- atmosphere-cryosphere system. 
Just as the 1 day NWP forecast is critical in determining the 10 day forecast, it is likely that 10-30 year 
forecasts will be determined by one season to one year forecast. Institutionally the seamless framework 
requires the weather and climate communities to work as an integral part of a single scientific enterprise.   
2. Weather prediction 

It was nearly 100 years a go that V. Bjerknes made a prophetic statement that by using the “knowledge of 
the state of the atmosphere at the initial time,” and “knowledge of the laws according to which one state of the 
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atmosphere develops another,” if we were able to make accurate forecasts for the future, “meteorology would 
then have become an exact science, a true physics of the atmosphere.” The seminal work of V. Bjerknes 
(1904) laid the foundation for mathematical modeling of atmospheric dynamics based on the laws of physics. 
Subsequent works by Richardson, Rossby, Charney and Phillips lead to a successful demonstration of 
prediction of short-term changes in the large scale atmospheric flow pattern by using dynamical models and 
heralded the modern era of numerical prediction of weather. Needless to say, that the advances in 
observational technologies which can accurately describe the state of the atmosphere, data analysis and data 
assimilation methodologies, and, advances in modeling of the atmosphere have made the dream of V. 
Bjerknes a reality. The steady advance in the accuracy of numerical weather prediction during the past 30 
years is one of the most outstanding examples of scientific progress in the twentieth century. Global society is 
reaping huge benefits from improved weather forecasts. The number of deaths caused by weather and climate 
disasters has been reduced. In the past 20 years, the forecast error at day one has been reduced by more than 
50%. This has occurred due to steady progress in improving the initial conditions of the atmosphere (which is 
mainly due to better data quality procedures, better assimilation techniques, and higher resolution models) and 
improving the accuracy and parameterizations in weather prediction models.   

Having already made steady progress during the past 30 years, there is no indication yet that we have 
reached the limit of weather prediction. After examining the predictability of one of the operational weather 
prediction models of the European Centre for Medium Range Weather Forecasts (ECMWF), Lorenz (1982) 
made the following remarks: 

“Better than guesswork forecasts of instantaneous weather patterns nearly two weeks in advance appear 
to be possible, and efforts to establish numerical-prediction models which are potentially capable of 
making such forecasts, and observing systems which enable to models to realize their potentialities, should 
continue.” 

This statement is as valid today as it was 27 years ago. After publication of Lorenz’s paper, it could have 
been argued that as we continue to increase the resolution of models and resolve fast growing instabilities, the 
growth rate of initial errors becomes so large that no additional advantage will be gained by increasing the 
resolution of models. This did not happen at all. The skill of weather forecasts has continued to increase. 
While it is true that as the one-day forecast error has been reduced by 50%, the growth rate of initial error has 
increased from the doubling time of about 2 days to 1.5 days, however there still remains unrealized weather 
predictability for days 1-10.   

In a classic paper Lorenz (1969) demonstrated how in a two-dimensional barotropic system an initial 
error in small scales induces error growth in larger scales. He showed that the predictability limit depended 
sensitively on the equilibrium energy spectrum. For a -5/3 slope, predictability is intrinsically limited no 
matter how small the initial error. However, for spectral slope of -3 or greater, increases in predictability were 
possible with the reduction in the scale and size of the initial error. Experience with operational numerical 
weather prediction (NWP) during the past 25 years has shown that as we continue to reduce the resolution of 
NWP models and improve the initial conditions of the atmosphere with better data analysis and assimilation 
schemes, we continue to improve medium range weather forecasts. Does this mean that we are still in the -3 
regime? Or, is it possible that although our current high resolution models are beginning to resolve the upper 
portions of the -5/3 spectral range, the reason we continue to improve forecasts is because the scaling 
arguments on which intrinsic limits of predictability were based are not valid for the small scale of the real 
atmosphere? Recent observations of the atmospheric energy spectrum and numerical experiments with 
extremely high resolution models suggest that further improvements in medium range weather forecasts with 
improved high resolution models and improved observations is indeed possible.  

A few examples of very high-resolution regional weather prediction models clearly show that local 
weather phenomena forced by local orography can be resolved and simulated better by higher resolution 
models. There are also a few examples of global very high-resolution models that show a far more realistic 
simulation of global weather by eliminating the parameterization of moist convection. There is also well-
documented evidence to show that ensemble forecasting has improved the reliability of weather forecasts. In 
summary, there is overwhelming evidence to suggest that substantial improvements in the accuracy and the 
reliability of medium range weather forecasts beneficial to society is still possible if we can improve the 
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initial state by using accurate observations and extremely high resolution weather prediction models that can 
explicitly resolve deep convective cloud systems. The improvements in the medium-range weather forecasts 
will directly translate into improvements in seasonal forecasts and vice versa. 

3. Dynamical seasonal prediction 

Twenty-five years ago, dynamical seasonal prediction was inconceivable. Today, it is a reality. This has 
become possible because of another major breakthrough in our field with the realization that, although the 
atmosphere is a chaotic dynamical system, there is predictability in the midst of chaos (Shukla 1998). Certain 
regions of the global atmosphere are so strongly determined by the underlying boundary conditions (viz sea 
surface temperature) that they do not show sensitive dependence on initial conditions of the atmosphere, and 
it should be possible to predict the atmospheric circulation (and rainfall) for as long as the lower boundary 
forcing can be predicted. Researchers have demonstrated that interactions among the global atmosphere, 
global oceans and global land surface, can produce fluctuations that are potentially predictable beyond the 
deterministic limit of predictability for weather. Researchers have further demonstrated that the short-term 
fluctuations of climate at seasonal and interannual timescales are indeed predictable. Just like the advances in 
weather prediction, this has also been made possible because of steady improvements in the prediction models 
which could be integrated for hundreds of days, and could simulate the observed covariability between the 
slowly varying boundary conditions at the earth’s surface and the atmosphere, and, improvements in coupled 
models which could predict these boundary conditions. 

However, operational dynamical seasonal prediction is still in its infancy. Differences in the estimates of 
seasonal predictability by various “state-of-the-art” models in the world today are quite large, just as large, or 
even larger than the difference in the estimates of weather predictability 30 years ago. There is no evidence to 
suggest that the current limitations in the skill of dynamical seasonal forecasts is due to some fundamental 
predictability limit, on the other hand, there is overwhelming evidence that improvements in models and the 
initial conditions of ocean, land and atmosphere will improve accuracy of dynamical seasonal predictions. 

When several state-of-the-art models were forced with the same SST, they produced very large 
differences in the tropical convection and the associated seasonal mean precipitation. It is our considered 
opinion that difference in the parameterizations of moist convection is the main reason for differences in the 
tropical precipitation and the associated global circulation. Therefore, in order to make better estimate of 
predictability of seasonal mean circulation and rainfall, it is essential to utilize high resolution models which 
can resolve and describe organized cloud systems with deep moist convection in the atmosphere, small scale 
orographic and landscape features overland, and energetic eddies in the oceans. 

4. Sub-seasonal prediction 

In spite of significant progress in weather forecasting for days 1-10, and some progress in dynamical 
seasonal prediction for days 1-100 averages, there is no comparable progress in understanding and predicting 
evolution of weather events during a season. It is well known that there are large week-to-week variations 
within a season, and even if it is not possible to predict the actual sequence of day-to-day weather, if it were 
possible to predict statistics of intra-seasonal variability, it would be highly beneficial to society. Examples of 
Intraseasonal variability which affect seasonal mean as well as produce large societal impacts during a season 
are given below: 

1. Active and break cycles of Asian summer monsoon: the large weekly and monthly variations of 
regional monsoon rainfall are important for agriculture, energy and water supply planning. 

2. Madden-Julian Oscillations: they produce a large tropical as well as extra-tropical variations during a 
season. 

3. Tracks of tropical disturbances: even if individual hurricanes, typhoons and other tropical disturbances 
cannot be predicted beyond a few days, if it were possible to predict the statistics of these disturbances 
(changes in tracks, number and intensity), it would be extremely beneficial to society. 

4. Extra-tropical storm tracks modulated by slowly varying large-scale flow. 
5. Statistics of extreme events within slowly varying large scales flow. 
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In order to address the question of predictability of the statistics of high impact local weather events it is 
required that the models used for seasonal prediction resolve and simulate the local weather events. It is 
therefore essential that the models for predicting daily, weekly, monthly and seasonal variation be unified. In 
other words, very high-resolution models without parameterizations of deep moist convection must be 
extended at least up to a season to predict the statistics of high impact weather events within a season. It can 
be conjectured that since parameterizations of moist convection in coarse-resolution models is the main 
source of uncertainty in simulation and predicting seasonal means, models that can explicitly simulate 
organized could systems with moist convection will enhance the predictability of weekly and monthly 
averages during a season. A recent paper by Miura et al. (2007) supports this conjecture.  

5. Decadal prediction and projection of climate change 

Thanks to the IPCC, there is vast literature on projections of climate change. It is well known that the 
most recent assessment of the IPCC (2007) shows a large model dependent range in the projected global 
warming. We do not know, and there is no simple way to find out, that even for identical external forcing 
what parts of these differences is due to deficiencies in model physics and model resolution and what part is 
due to the intrinsic chaotic nature of the coupled climate system. A comparison of the model’s ability to 
simulate the climate of the twentieth century and global warming in the twenty-first century showed (Shukla 
et al., 2006) that global warming in the twenty-first century was large (4°-5°C) for those climate models that 
had the least error in the simulation of the twentieth century climate, and models with the largest error in 
simulating the current climate had small (2°-3°C) warming. Such results, although by no means definitive, 
strongly suggest the need to improve the fidelity of climate models. 

There is also a great deal of scientific and societal interest in quantifying the predictability of decadal 
variations. Climate models should be able to simulate the regional weather fluctuations, intra-seasonal, 
seasonal and interannual variations as well as the decadal and multi-decadal variations to be able to be a 
reliable tool to predict changes in regional climate for 10-30 year time scales. The challenges of making 
reliable predictions of decadal variations require that the models are able to distinguish between the 
“unforced” decadal variations due to the internal dynamics of the coupled climate system and the “human 
forced” external component due to changes in greenhouse gases and land surface conditions. Decadal 
variations can be caused by changes in the amplitude and frequency of El Niño events, which can be caused 
by changes in the intra-seasonal (MJO, westerly wind bursts etc) variations which can, in turn, be caused by 
changes in the organized tropical convection. It is therefore important that climate models can resolve and 
simulate the meso-scale cloud systems with organized deep convection, intra-seasonal variations, ENSO, as 
well as decadal meridional oceanic overturning. This does not mean that climate models must correctly 
predict the phase evolution of each phenomenon for a long time (that will be impossible because of chaos; 
each phenomena will have its own intrinsic limit of deterministic prediction), but it does mean that the 
statistics of each phenomenon is correctly simulated by the climate models. If a model cannot simulate a 
phenomena, it cannot predict that phenomena. 

6. Evolution of the concept of seamless prediction in WCRP 

It is in the context described above that the author proposed to the WCRP in 2002 (WCRP, 2007) that a 
World Climate Experiment be launched to assess the predictability of climate system at all time scales. In 
response, the Joint Scientific Committee of WCRP established a task force (members: B. Hoskins, J. Church, 
J. Shukla), which, for the first time, introduced the concept of seamless prediction to WCRP. The task force 
on predictability assessment was later expanded by the WCRP to a much larger task force to develop a 
strategic framework for the future of WCRP. The newly developed WCRP strategic framework for 2005-2015 
was named: Coordinated Observation and Prediction of the Earth System (COPES). The main aim of COPES 
is to facilitate analysis and prediction of Earth system variability and change for use in an increasing range of 
practical application of direct relevance, benefit and value to society. 

The concept of seamless prediction as articulated by the WCRP-COPES strategic framework is quoted 
below (WCRP, 2005). 

1. “There is now a new perspective of a continuum of prediction problems, with a blurring of the 
distinction between shorter-term predictions and longer-term climate projections. Increasingly, 
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decadal and century-long climate projection will become an initial-value problem requiring 
knowledge of the current observed state of the atmosphere, the oceans, cryosphere, and land surface 
(including soil moisture, vegetation, etc.) in order to produce the best climate projections as well as 
state-of-the-art decadal and interannual predictions.” 

2. “The shorter time-scales and weather are known to be important in influencing the longer-time-scale 
behavior. In addition, the regional impacts of longer-time scale changes will be felt by society mainly 
through the resulting changes in the character of the shorter time-scales, including extreme events. In 
recognition of this, climate models are being run with the highest possible resolution; resolutions 
there were employed in the best weather forecast models only a few years ago.” 

3. “Even though the prediction problem itself is seamless, the best practical approach to it may be 
described as unified: models aimed at different time-scales and phenomena may have large 
communality but place emphasis on different aspects of the system.” 

The WCRP strategic framework and the WCRP Modeling Panel adopted the concept of seamless 
prediction as the organizing principle for the future of WCRP modeling. 

Since climate in a region is an ensemble of weather events, understanding and prediction of regional 
climate variability and climate change, including changes in extreme events, will require a unified initial 
value approach that encompasses weather, blocking, intra-seasonal oscillations, MJO, PNA, NAO, ENSO 
PDO, THC, etc. and climate change, in a seamless framework. 

The seamless prediction concept implies seamlessness across space and time scales (multi-scale 
interactions); across scientific disciplines (physical climate system, biogeochemical cycles, socioeconomic 
systems); across institutions (academic, government, corporations); and across geographical boundaries (local, 
state, national, international). 

Considering that the existing institutions have been established separately for weather prediction and 
climate research, it will be indeed a challenge to integrate and synthesize the activities of different weather 
and climate institutions in a seamless framework. 

7. A proposal to revolutionize weather and climate prediction 

About 150 scientists from the major modeling centers of the world gathered at the World Modelling 
Summit for Climate Prediction (held in Reading, England [6-9 May, 2008]) organized by the World Climate 
Research Program to discuss ways to revolutionize weather and climate prediction. 

The deliberations at the Summit lead to a statement published in BAMS (Shukla et al., 2009). An 
important statement of the Summit was the need for a world climate research facility for climate prediction: 

“The central component of this world facility will be one or more dedicated high-end computing 
facilities that will enable climate prediction at the model resolutions and levels of complexity 
considered essential for the most advanced and reliable representations of the climate system that 
technology and our scientific understanding of the problem can deliver. This computing capability 
acceleration, leading to systems at least a thousand times more powerful than the currently available 
computers, will permit scientists to strive towards kilometer-scale modeling of the global climate 
system which is crucial to more reliable prediction of the change of convective precipitation 
especially in the tropics.” 

In this paper, I take the Summit statement one step further and propose the establishment of an 
international center for climate prediction consisting of three interconnected advanced computing facilities for 
climate research and prediction. This international center will help global society for adaptation, mitigation 
and sustainable development. 

8. International center for climate prediction 

The world recognizes that humans are contributing to climate change. The impending threat of global 
change is one of the most important and urgent problems facing humanity. The nations of the world are 
engaged in serious discussions about the most desirable and practical national and international strategies to 
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achieve the dual objectives of reducing the emissions of greenhouse gases and ensuring sustainable 
development. 

One important aspect of the problem that is not getting sufficient attention, especially in international 
negotiations, is the inevitability of climate change due to emissions that have already taken place, and the 
emissions that will certainly take place in the coming decades. Global society, especially the developing 
world, will require accurate, reliable and quantitative prediction of inevitable regional climate change for 
sustainable and resilient development. To adapt to, and to cope with, the dire consequences of inevitable 
climate change will require investments of trillions of dollars. 

Although the current generation of climate models has shown convincingly that human activities can 
produce large changes in the climate, these models are not adequate to make accurate and reliable predictions 
of regional climate change and extreme events that are required for science-based adaptation strategies. The 
major effort of the international scientific community during the past 20 years has been focused on 
convincing a handful of powerful skeptics that global warming is real, rather than conducting the appropriate 
research necessary to build sophisticated climate models suitable for providing useful guidance to the policy 
makers for adaptation and mitigation. Therefore a large number of members of the scientific community, 
including climate scientists in India, are highly skeptical, and correctly so, about the current projections of 
regional climate change in India. We do not have confidence in the estimates of projected climate change for 
different regions of India, for example, identifying which regions will be affected by severe droughts or 
severe floods, the number and intensity of tropical cyclones, etc. 

It is therefore necessary to develop and build accurate and advanced global models for climate prediction 
so that reliable and quantitative predictions of regional climate change can be provided to global society for 
science-based adaptation strategies. It is both possible and necessary to have a revolution in climate prediction. 
It is possible because of the major scientific and technological advances, and it is necessary because 
adaptation strategies in response to climate change require the most accurate and reliable regional predictions 
of climate. Sustainable development and the security of the future of life on Earth over the next century 
demand the best possible information both on the planet’s life-support system, in particular the availability of 
water and food, and possible socio-economic catastrophes due to climate change. The necessary scientific 
expertise and the computational-technological capabilities to produce reliable regional climate predictions are 
not available in any single nation. 

Regional climate prediction does not mean we should use regional models to predict climate change 
because regional models require lateral boundary conditions which are currently obtained from low-resolution 
climate models. It has been pointed out by the WCRP Modeling Panel that, “Use of high resolution regional 
models to downscale regional climate change is questionable if the global models from which lateral 
boundary conditions for regional models are prescribed do not have reliable simulation of planetary waves 
and statistics of storms and blocking.” Global climate models at ultra fine resolution will require a huge 
increase in computational capability. Table 1 gives some estimates of computing capability required for 
different model grid resolutions and throughput rate (simulated days per wall clock hour). We argue that 
comprehensive multi-national efforts are essential to provide reliable climate predictions, and assessing their 
impact, with the level of confidence required by society.  

Climate change is a global problem and the solution to the problem of providing governments and society 
with reliable climate predictions should also be addressed at the global level. Many countries of the world will 
be making adaptation decisions costing sizable fractions of GDP in the billions (perhaps trillions) of dollars. It 
is highly desirable that these decisions are based on the most accurate climate predictions made by the most 
advanced scientific tools and infrastructure possible. It is proposed that an International Center for Climate 
Prediction be established to provide all the nations of the world the most accurate and reliable description of 
the current global environment, and prediction of climate change and its impacts based on the best science 
and the most advanced technology. The international center will foster research and training for building 
global capacity, developing a trained scientific workforce and engaging the global user community. 

There are several examples of successful international institutions. The Consultative Group on 
International Agricultural Research (CGIAR) is credited with launching the global Green Revolution towards 
sustainable food security and poverty reduction. The Hubble Telescope, the Human Genome Project, 
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ECMWF and the high-energy particle accelerator at CERN are outstanding successful examples of 
internationally funded infrastructures, and the ITER nuclear fusion facility may prove to be another. We assert 
that the problem of climate prediction is so important and urgent that it needs international collaboration and 
international infrastructure to provide society accurate and reliable climate information. 

Peak Rate: 10 TFLOPS 100 TFLOPS 1 PFLOPS 10 PFLOPS 100 PFLOPS 

Cores 1,400 
(2006) 

12,000 
(2008) 

80-100,000 
(2009) 

300-800,000 
(2011) 

6,000,000? 
(20xx?) 

Global NWP0: 
5-10 days/hr 18 - 29 8.5 - 14 4.0 - 6.3 1.8 - 2.9 0.85 - 1.4 

Seasonal1: 
50-100 days/day 17 - 28 8.0 - 13 3.7 - 5.9 1.7 - 2.8 0.80 - 1.3 

Decadal1: 
5-10 yrs/day 57 - 91 27 - 42 12 - 20 5.7 - 9.1 2.7 - 4.2 

Climate 
Change2: 

20-50 yrs/day 
120 - 200 57 - 91 27 - 42 12 - 20 5.7 - 9.1 

Table 1  Computing Capability & Model Grid Size (km). These estimates are based on the performance of 
the WRF atmospheric model of the grid size (km) that could be used at various computational capability 
levels for problems ranging from numerical weather prediction (NWP) to climate change projection. A 
minimum threshold of time-to-solution is assumed in each category.  The first column gives the 
throughput rate (simulated days/years per wall clock hour/day). 
Range: Assumed efficiency of 10-40% 
0 - Atmospheric General Circulation Model (AGCM; 100 levels) 
1 - Coupled Ocean-Atmosphere-Land Model (CGCM; ~ 2X AGCM computation with 100-level OGCM) 
2 - Earth System Model (with biogeochemical cycles) (ESM; ~ 2X CGCM computation) 
* Core counts above O(104) are unprecedented for weather or climate codes, so the last 3 columns 

require getting 3 orders of magnitude in scalable parallelization (scalar processors assumed; vector 
processors would have lower processor counts) 

We propose that the international center will consist of at least three international nodes of advanced 
computing facilities for climate prediction. Considering the probabilistic nature of climate prediction and the 
need for creative competition among the scientific groups, and the large investments needed to create such 
facilities, the establishment of three independent but inter-connected facilities was considered to be optimal. 
Once the three international facilities are in place they should be connected to multiple regional climate 
prediction and adaptation research centers worldwide which will take the prediction from the international 
center and add value for local adaptation. The three interconnected computing and prediction facilities will 
engage scientists from all over the world. In particular, it must guarantee that climate-modeling groups from 
the developing countries contributed with predictions for future climate change. We propose that the new 
climate prediction facilities should be truly international and include developing countries. Each of the three 
international facilities will have a core scientific and technical staff of about 300 persons, and computer 
capability of about 20 Petaflops in the near future and about 200 Petaflops by the end of the next decade. Each 
facility will work closely with more than 500 scientists who will have high-level connectivity and access to 
the facility. The cost of such a single facility will be about $200 million per year; about $100 million per year 
for computational and data facilities, and about $100 million per year for scientific and technical staff, 
capacity building and research. The funding for the center can come from both adaptation funds under the 
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UNFCCC and national contributions. The benefits to society will be enormous; some of the benefits are listed 
below: 

1. To provide reliable quantitative predictions of regional climate change required for developing cost-
effective adaptation and mitigation strategies, and to cope with the dire consequences of climate 
change. 

2. All the nations of the world will have access to the most accurate and reliable climate information to 
plan their respective national adaptation strategies. 

3. Build global capacity, develop a trained scientific workforce and engage the global user community. 
4. Provide computational capacity to scientists worldwide that is unavailable at the national level. This 

has the potential to revolutionize climate prediction worldwide. 
5. Make fundamental advances in climate modeling and prediction which is currently not possible 

because of insufficient computational capability and lack of a critical mass of scientific workforce. 
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1. Introduction 

Droughts and floods are extreme climate events, among the most costly natural disasters. Many studies 
have demonstrated that droughts over U.S. are associated with cold eastern tropical Pacific (e.g., Piechota and 
Dracup 1996; Trenberth and Guillemot 1996; Ting and Wang 1997; Rajagopalan et al. 2000; Hoerling and 
Kumar 2003; Schubert et al. 2004; Seager et al. 2005; Mo and Schemm 2008). Studies have also indicated the 
contribution of SST anomalies in other regions to U.S. droughts, such as the mid-latitude North Pacific and 
the tropical North Atlantic Ocean. Another important factor for droughts is a positive soil moisture-
precipitation feedback. Initial soil moisture 
anomalies induced by precipitation variations 
associated with atmospheric circulation changes 
can positively feed back on the succeeding 
precipitation, thus prolonging droughts (Findell 
and Eltahir 1997; Eltahir 1998; Pal and Eltahir 
2001). 

The present study investigates the relationship 
of U.S. summer drought with SST and soil 
moisture. The analysis distinguishes droughts at 
different time scales based on the Standardized 
Precipitation Index (SPI). We are interested in 
determining (1) which region SST has the most 
significant relationship with the U.S. summer 
droughts, (2) which region summer droughts are 
mostly influenced by remote SST forcing, (3) the 
role of soil moisture in droughts, and (4) how is 
the long-term change in the relationship between 
droughts and SST forcing. 

 
 

  
 
 

 

Fig. 1  Correlation of DJF and JJA SST with respect to 
JJA PDSI and SPI averaged over the Great Plains 
(30°-50°N, 95°-105°W) during 1897-2005. The 
contour interval is 0.1. Contours with correlation 
values smaller than 0.2 are suppressed. The 
correlation coefficient at the 1% significance level 
is about 0.25 (or 0.35 for SPI24). 

2. Datasets 

We use both the Palmer Drought Severity 
Index (PDSI; Palmer 1965) and the Standardized 
Precipitation Index (SPI; McKee et al. 1993) for 
344 US Climate Divisions over the period 1895-
2007, which are obtained from the National 
Climatic Data Center. The PDSI is based on a 
water balance model. The PDSI has several 
limitations, one of which is that it is not spatially 
comparable across the contiguous U.S. (Alley 
1984; Guttman et al. 1992). The SPI is based 
solely on the probability of precipitation for a 
given time period. The SPI allows for comparison 
of precipitation observations at different locations 
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with markedly different climates. A key feature of the SPI is the flexibility to measure drought at different 
time scales, which allows separating and estimating contributions of different time scales to a specific drought 
event. 

The present study uses monthly soil moisture and evaporation for 344 US Climate Divisions over the 
period 1932-2005 from the Climate Prediction Center, which is estimated with a one-layer hydrological 
model driven by observed precipitation and temperature (Fan and van den Dool 2004). Observations at 19 soil 
moisture stations in Illinois covering the period from 1981 to June 2004 are used for validating the soil 
moisture-drought relationship. The Illinois soil moisture data (Hollinger and Isard 1994) are obtained from 
the Global Soil Moisture Data Bank (Robock et al. 2000). 

The present study uses the extended reconstruction of monthly mean SST version 2 (ERSST2) for the 
period 1854-2005 (Smith and Reynolds 2004). This SST dataset has a spatial resolution of 2°. 

3. Global SST correlation with the Great Plains drought indices 

Figure 1 shows the correlation of the June-August (JJA) drought indices in the Great Plains region (30°-
50°N, 95°-105°W) with global SST in JJA and the preceding December-February (DJF). The SPI03, SPI09, 
and SPI24 indices are selected to represent short-term, medium-term, and long-term droughts, respectively. 
The correlation distribution in Fig. 1 broadly resembles the El Niño SST pattern, but with pronounced 
differences. There is a region of positive correlation over the central-eastern tropical Pacific and the tropical 
Indian Ocean, and weak negative correlation extends northeastward and southeastward from the tropical 
western Pacific. The largest positive correlation tends to be located on the north and south sides of the 
equatorial Pacific, which differs markedly from the ENSO SST pattern. 

Overall, the correlation distribution for PDSI is 
most similar to that for SPI09. The correlation for 
SPI03 displays notable differences from that for SPI24, 
SPI09, and PDSI. The short-term droughts have a 
better correlation with simultaneous SST than the 
preceding DJF SST, with noticeable correlation 
limited to the tropical Pacific Ocean and the North 
Atlantic Ocean. The medium-term droughts have a 
good correlation with tropical Pacific SST in both JJA 
and DJF. The long-term droughts have a better 
correlation with the tropical Pacific SST in DJF than 
JJA. SPI09 and SPI24 display a positive correlation 
with SST in the tropical Indian Ocean in both DJF and 
JJA. In comparison, the PDSI has a weaker correlation 
in the tropical Indian Ocean. The positive correlation 
extends to the South China Sea and the East Asian 
coastal region. All the indices show a negative 
correlation with DJF SST in the middle-latitude North 
Atlantic Ocean. In the North Atlantic Ocean, the 
SPI03 and SPI09 have a similar correlation with JJA 
SST, with positive correlation in the subtropics and 
negative correlation in the middle latitudes; whereas 
the correlation for PDSI and SPI24 is only seen in the 
middle latitudes. There is a negative correlation in the 
middle latitudes of the North Pacific for PDSI, SPI03, 
and SPI09 in JJA and for PDSI and SPI09 in DJF, but 
the area covered is relatively small. 

Figure 2 shows the lead-lag correlation of soil 
moisture and evaporation with reference to JJA 

Fig. 2  Lag-lead correlation of soil moisture (a) and 
evaporation (b) with respect to PDSI and SPI 
averaged over the Great Plains (30°-50°N, 95°-
105°W) during 1932-2005. The correlation 
coefficient at the 1% significance level is about 
0.30 (or 0.40 for SPI24). 
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drought indices for the Great Plains region. The 
soil moisture-drought relationship has a strong 
dependence on the time scale of droughts. The 
difference is more prominent when the soil 
moisture leads. For SPI03, the soil moisture 
shows the highest correlation at lag 0, a quick 
drop of correlation in the first three lead months. 
The evaporation correlation is largest at lag 0-1 
month. This indicates a sequence of precipitation, 
soil moisture, and evaporation changes for short-
term droughts. For PDSI, the lag-lead 
correlation is fairly symmetric. For SPI09, the 
soil moisture has the largest correlation at 1-
month lead. The evaporation correlation tends to 
be symmetric. Soil moisture and evaporation 
changes apparently lead SPI24. The large 
correlation in JJA common to different times 
scales suggests that the contribution of soil 
moisture to summer droughts may be through 
surface evaporation although the cause-effect 
relationship needs to be validated. In comparison, 
the lag-lead correlation suggests that for short-
term droughts, the precipitation impacts are 
larger than the soil moisture impacts, whereas 
for medium-term and long-term droughts, the 
soil moisture impacts are pronounced. 

4. U.S. summer drought correlation with the 
NINO3.4 SST 

Figure 3 shows the correlation of JJA 
drought indices with respect to DJF and JJA 
NINO3.4 (5°S-5°N, 170°-120°W) SST. There 
are important differences between short-term 
and long-term droughts. The SPI03 has a higher 
correlation with JJA NINO3.4 SST than DJF 
NINO3.4 SST, whereas the PDSI, SPI09, and 
SPI24 have a larger correlation with DJF than 
JJA NINO3.4 SST. Notably, the JJA correlation 
is large for SPI03 in the Great Plains. The 
highest DJF correlation for PDSI, SPI09, and 
SPI24 is found in the Southwest with northward 
extension into the Great Plains. The magnitude 
of correlation is close for PDSI and SPI09, while 
the correlation for SPI24 is smaller. 

The ENSO impacts on drought could be 
through soil moisture and evaporation changes 
induced by precipitation anomalies due to 
ENSO forced circulation changes. This is 
demonstrated by the lead-lag correlation of the 
drought indices averaged over the Southwest 
(30º-40ºN, 95º-115ºW) with respect to DJF 
NINO3.4 SST, which is shown in Fig. 4. The 

Fig. 3  Correlation of JJA PDSI and SPI with respect to 
DJF and JJA NINO3.4 SST during 1897-2005. The 
contour interval is 0.1. The correlation coefficient at 
the 1% significance level is about 0.25 (or 0.35 for 
SPI24). The box in (a) refers to the Southwest region 
(30°-40°N, 95°-115°W). 

Fig. 4  Lag-lead correlation of U.S. Southwest (30°-40°N, 
95°-115°W) PDSI, SPI, soil moisture, and 
evaporation with respect to DJF NINO3.4 SST during 
1932-2005. The correlation coefficient at the 1% 
significance level is about 0.30 (or 0.40 for SPI24). 
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ENSO impacts on PDSI, SPI09, and 
soil moisture are apparent in DJF. The 
largest correlation is seen in MAM, 
lagging the ENSO mature phase by 
about one season. The induced 
droughts can persist into spring and 
summer. This persistence seems to be 
related to the enhanced evaporation in 
late spring and summer following the 
increase in soil moisture. This soil 
moisture-evaporation effect seems 
especially important for long-term 
drought that develops after DJF. Note 
that the evaporation correlation is 
small in DJF and becomes large in 
late-spring and summer, indicating a 
delayed feedback of soil moisture on 
droughts through evaporation, which 
may be related to the annual cycle of 
insolation and temperature. There is a 
similar feature in the Great Plains 
region except that the correlation is 
weaker (not shown). 

5. Long-term changes in the SST-
drought correlation 

We have examined the long-term 
changes in the SST-drought 
relationship with the time. Shown in 
Fig. 5 is the sliding correlation 
between DJF NINO3.4 SST or JJA 
tropical Indian Ocean SST (15°S-
15°N, 50°-100°E; TIO) and drought 
indices using a 31-year window. 

The DJF NINO3.4 SST shows a 
robust positive correlation with PDSI, SPI09, and SPI24 in the Southwest during the whole period, but the 
magnitude of correlation varies largely (Fig. 5a). The correlation of SPI03 in the Southwest with DJF 
NINO3.4 SST displays an apparent contrast before and after the mid-1950s. For the Great Plains region, the 
correlation with the DJF NINO3.4 SST shows an overall weakening with time until the mid-1950s (Fig. 5b). 
After that, the correlation tends to increase until the early-1980s, which is then followed by a weakening in 
the correlation. Our results are consistent with Cole and Cook (1998). In comparison, the correlation change 
is relatively smaller for the Southwest than for the Great Plains.  

The JJA TIO SST correlation shows a pronounced change with time. Before the late-1930s, the 
correlation is generally weak for both the Southwest and the Great Plains (Figs. 5c-d). The correlation 
underwent an obvious increase from the late-1930s to the mid-1940s. After a relatively steady period of about 
10 years, the correlation displays an overall decrease with time for PDSI, SPI09, and SPI24 in the Southwest, 
and for PDSI and SPI09 in the Great Plains. The SPI24 in the Great Plains maintained a steady positive 
correlation from the 1960s to the mid-1980s (Fig. 5d). 

6. Summary 

The main results are as follows:  

Fig. 5  Sliding correlation between DJF NINO3.4 SST or JJA TIO SST 
and JJA Southwest or Great Plains PDSI and SPI with a window 
of 31-years. The correlation shown in the figure is for the center 
year of the 31-year window. The correlation coefficient at the 5% 
significance level is about 0.36 (or 0.50 for SPI24). 
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• The relationship of boreal summer U.S. droughts with SST and soil moisture differs significantly 
between short-term and long-term droughts. The short-term droughts (<= 3 months) are mostly 
influenced by simultaneous SST forcing. The medium-term and long-term droughts (>= 6 months) 
are influenced by both preceding and simultaneous SST forcing. The soil moisture change shows 
obvious leading for medium-term and long-term droughts. 

• A dominant remote forcing for U.S. droughts is tropical Pacific SST. Tropical Indian Ocean SST 
forcing has notable influence on medium-term and long-term droughts. Additional impacts for short-
term and medium-term droughts are from the North Atlantic SST forcing. 

• The most notable impacts of the tropical Pacific SST forcing on medium-term and long-term droughts 
are found in the Southwest with extension to the Great Plains. Anomalous soil moisture induced by 
remote ENSO forcing contributes to the persistence of droughts from winter to summer through 
anomalous evaporation during late spring to summer. 

•     The relationship between tropical Pacific SST and boreal summer U.S. droughts show obvious long-
term changes. In comparison, the long-term change is more pronounced for the GP droughts than for 
the SW droughts. Obvious long-term changes are also found in the correlation of U.S. droughts with 
tropical Indian Ocean SST, especially for JJA SST.  
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1. Introduction 

An intercomparison of the statistics of daily precipitation over the Americas is carried out using gridded 
station data and the current generation of reanalysis products in use at the National Centers for Environmental 
Prediction (NCEP). Several simple measures are used to characterize relationships between the observations 
and reanalyses for the period of record, including difference in the means, ratio of variances, and correlation. 
Seasonality is accounted for by examining these measures on a monthly basis, using daily data in each case.   

The intercomparison is motivated by Climate Prediction Center (CPC) plans to replace the current 
generation of reanalysis products in use for operational monitoring and prediction activities with a new 
generation of reanalysis products currently under development at the National Centers for Environmental 
Prediction (NCEP) Environmental Modeling Center (EMC) as part of the Coupled Forecast System 
Reanalysis and Reforecast (CFSRR) Project.  A careful validation of the current generation of reanalysis 
products will provide a benchmark that can be used to confirm that the new generation of reanalysis products 
is an improvement.  

2. Background 

Since the mid-1990’s the Climate Prediction Center (CPC) has used the National Centers for 
Environmental Prediction (NCEP) / National Center for Atmospheric Research (NCAR) reanalysis products 
(Kalnay et al. 1996; referred to as R1) and their real-time extension forward in time via the Climate Data 
Assimilation System (CDAS) for operational climate monitoring and prediction activities.  The current 
generation of reanalysis products is among the most popular and widely used climate data sets currently in 
existence. The NCEP/DOE Reanalysis (R2), obtained using an updated forecast model and data assimilation 
system (Kanamitsu et al. 2002), is also used at CPC. 

The NCEP is currently developing the next generation of reanalysis products as part of the Climate 
Forecast System (Saha et al. 2006) Reanalysis and Reforecast (CFSRR) project – a project that is driven by 
NCEP’s intraseasonal-to-interannual prediction needs. The Environmental Modeling Center (EMC) plans 
call for the CFSRR to extend over the period 1981-present.  CPC plans to extend the CFS reanalysis 
backward in time to 1948 and forward in real-time in order to satisfy operational climate monitoring and 
prediction needs. One of the advantages of the extension backward in time is that it will increase the number 
of cases of the low frequency modes of climate variability, such as ENSO, for a proper comparison of the 
CFSR to the current generation of reanalysis (R1 and R2). The CFS reanalysis products are expected to be a 
major improvement over the current global reanalysis, as they will be the result of a coupled Ocean-
Atmosphere-Land system at higher spatial resolution.  

3. Preliminary results for United States 

Daily precipitation statistics were computed for the reanalyses (R1 and R2) and the observations (CPC 
gridded precipitation analysis).  R1, R2 and OBS time series were constructed for the domain 20°N-60°N, 
60°W-140°W, at a horizontal resolution of (lat/lon)=(2.5°x2.5°). Here we will show some results of three 
basic statistics: a) differences in probability of occurrence, b) ratio of variances, and c) correlation.  

The probability of daily precipitation greater than 1 mm (Fig. 1) is less than observed in R1 and R2 over 
the Southeast during November to March (with slightly greater biases in R2) and less than observed over the 
Southwest during June to September (with greater biases in R1). Both R1 and R2 have greater than observed 
probabilities over the Southeast during June to September (with greater biases in R1). 
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(a) (b) (c) 

Fig. 1. Probability of daily precipitation greater than 1 mm in (a) OBS, and   expressed as the difference 
between (b) R1 and OBS, and (c) R2 and OBS.  Results are shown for each month of the year and are 
based on daily data for the period 1979-2006. 

 

         

 

(a) (b) (c) 

Fig. 2. Probability of daily precipitation greater than 10 mm in (a) OBS, and  expressed as the difference 
between (b) R1 and OBS, and (c) R2 and OBS.  Results are shown for each month of the year and are 
based on daily data for the period 1979-2006. 
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(a) (b) (c)

Fig. 3. Ratio of variance of daily precipitation: (a) R1 / OBS, (b) R2 / OBS and (c) R1 / R2.  Results are 
shown for each month of the year and are based on daily data for the period 1979-2006. 

 

 
 

(a) (b) (c)

Fig. 4. Spatial maps of the temporal correlation between (a) R1 and OBS, (b) R2 and OBS and (c) R1 and 
R2. Results are shown for each month of the year and are based on daily data for the period 1979-2006. 
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The probability of daily precipitation greater than 10 mm (Fig. 2) is less than observed in R1 and R2 over 
the Southeast during November to February. Both R1 and R2 have greater than observed probabilities over 
the Southeast during May to September (with greater biases in R1). We note that the differences in the 
Southeast during May to September are nearly as large as they are in Fig. 1, indicating that the overestimates 
in R1 and R2 are probably for the relatively heavy (convective) precipitation events. 

An examination of the ratio of variance (Fig. 3) of daily precipitation between a) R1 and OBS and b) R2 
and OBS by month shows that both R1 and R2 exhibit less variability than observations on daily timescales 
over eastern TX, the Gulf Coast states and Tennessee Valley during October-April (ratios are less than 1), 
while the reanalyses display more variability than observed over the West throughout the year (ratios are 
greater than 1).  A notable exception is along the immediate West Coast where R1 and R2 are less variable 
than observations on daily time scales during much of the year (Figs 3a and 3b).  Figure 3c shows that R2 
variance is greater than R1 variance across the entire CONUS during May-October (greatest differences 
during July-September). In addition, R2 variance exceeds R1 variance along the Gulf Coast region during 
November-April.  Since the R2 and R1 variances are less than OBS during November-April (see figures 3a 
and 3b) over the Gulf region, the R2/R1 ratio greater than 1 shown in figure 3c indicates that R2 is closer to 
OBS in this region. 

Spatial maps of the temporal correlation between daily precipitation in R1 and OBS (R2 and OBS) (Fig. 
4a and b) show generally high correlations in winter and low correlations in summer when convection is 
present. Throughout the year, the correlations between R2 and OBS are lower than those for R1 and OBS. So, 
in spite of improvements in the mean bias of daily precipitation in R2 (figure not shown), the correlation with 
observations is not as good. 

4.  Summary 

Before CPC can confidently base its operational climate monitoring and prediction activities on a new 
generation of reanalysis and reforecast products, a comprehensive intercomparison of the old and new 
products is required.  Although the next generation of reanalysis products is not available yet, a careful 
validation of the current generation of reanalysis products will serve as a benchmark from which an objective 
evaluation of improvements in the new generation of reanalysis products can be made.  An important long 
term goal is to identify and correct biases in the statistics of daily precipitation within a season to improve 
CPC’s current operational monitoring and outlook products and to develop new outlook products on 
intraseasonal and seasonal timescales. 
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1. Introduction 

The purpose of this presentation is to give an overview of the real time drought monitoring at CPC. We 
use the drought indices to monitor precipitation (P), soil moisture (SM) and runoff deficits. Soil moisture and 
runoff are based on the North American Land Data Assimilation system (NLDAS) products. The 
uncertainties of the NLDAS are assessed by intercomparing the NLDAS products from the NCEP and the 
University of Washington (UW).   
2. Results 

Drought indices derived from the NLDAS from NCEP and 
UW from 1979 to 2007 are intercompared and evaluated for 
their ability to assess drought severity over the United States. 
Each system has four models. The uniformly weighted 
ensemble means of four models are used for comparison. For 
meteorological drought, the Standardized Precipitation Index 
(SPI) is used to measure precipitation deficits. The 
Standardized Runoff Index (SRI) similar to the SPI is used to 
classify hydrological drought. Agricultural drought is 
measured by monthly mean soil moisture anomaly percentiles 
based on probability distributions (PDs). The PDs for total SM 
are regionally dependent and influenced by the seasonal cycle, 
but the PDs for SM monthly mean anomalies are unimodal and 
Gaussian. 

Over the eastern United States (east of 95ºW), the indices 
derived from NCEP and UW are similar and they are able to 
detect the same drought events. Indices are also well correlated. 
For River Forecast Centers (RFCs) over the eastern United 
States, different drought indices are likely to select the same 
drought events.    

The monthly mean SM percentiles and runoff indices 
between NCEP and UW have large differences over the 
western interior United States. For small areas with a 
horizontal resolution of 0.5 degrees on the time scales of one 
to three months, the differences of SM percentiles and SRI 
between NCEP and UW are larger than the thresholds used to classify drought. For the western RFCs, 
drought events selected according to the SM percentiles or SRI derived from different NLDAS systems do not 
always overlap.   

The largest differences came after 2004, when both systems went for near real time production. Figure 1 
shows the monthly total data counts for boxes over the western region. After 2004, data counts dropped 
substantially. The differences in precipitation forcing cause large uncertainties in the NLDAS systems. 
3. Concluding remarks 

One of the major issues is the precipitation analysis. For real time operation, the P inputs over the western 
region are sparse. To improve P analysis is essential to improve NLDAS and drought monitoring. 

Correspondence to:  Kingtse Mo, Climate Prediction Center, NOAA/NWS/NCEP, Camp Springs, MD, 20746;   
E-mail:  Kingtse.Mo@noaa.gov 

Fig. 1  Monthly total P data counts averaged 
over grid points in 4 o x 5 o  boxes. 
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1. Introduction 

Many simulations of the potential effects of tropical deforestation on climate have been made using 
atmospheric general circulation models (AGCMs) coupled to land models and forced by specified SST (e.g. 
Dickinson and Henderson-Sellers, 1988; Nobre et al., 1991). Recently, CGCM (coupled general circulation 
models, which include dynamical oceans) simulations of tropics-wide (Voldoire and Royer 2005, referred to 
as VR05) and Amazon (Schneider et al. 2006, referred to as S06) deforestation have been made. We extend 
these CGCM results by examining the effects of Amazon deforestation on the coupled ocean-atmosphere-land 
climate system using the NCEP CFS. A primary advantage of CFS is that it has a much more realistic 
simulation of current Amazon climate than the CGCMs used in the earlier studies.   

Century length control and deforestation simulations are carried out with CFS. The results suggest that 
the impact of Amazon deforestation would be a warmer and drier Amazon, as well as a warmer tropical 
Pacific and tropical North Atlantic. However, these changes are small. ENSO is not noticeably affected. 
Sensitivities to changes in the land surface processes are diagnosed using uncoupled AGCM simulations, 
using GFS, the atmospheric model component of CFS. The GFS simulations suggest that albedo changes are 
the controlling influence for the Amazon deforestation effects found in CFS, due to the mechanism outlined 
by Charney (1975). 

An unexpected warming occurs in the 
northern North Atlantic region in the 
deforestation simulation. We examine the 
Meridional Overturning Circulation and 
other quantities in the simulations in an 
attempt to understand the origins of this 
change, which appears to be related to the 
physically inconsistent treatment of sea ice. 

2. Models and data  
Two 100 year simulations were carried 

out with CFS, a current climate control 
simulation (CONTROL) and a 
deforestation simulation (DEFOREST) in 
which tropical rainforest in the Amazon 
region (vegetation type 1) was replaced 
with perennial ground cover (vegetation 
type 7). In the deforested region, the 
albedo and surface roughness were also 
changed to values appropriate for areas of 
vegetation type 7 found near the Amazon. 
The vegetation change reduces the resistance to surface evaporation. The main effects of the deforestation on 
the specified surface properties were an increase in the shortwave beam albedo to about 30% from about 23% 
and a decrease in the roughness length to 0.1 m from values larger than 2 m. The simulations were started 
from analysis with identical Jan. 1, 1985 initial and boundary conditions. 

Correspondence to: Edwin K. Schneider, Center for Ocean-Land-Atmosphere Studies, 4041 Powder Mill Road, Suite 
302, Calverton, MD 20705; E-mail: schneide@cola.iges.org 

Fig. 1  Annual cycle of monthly means of precipitation (left) and 
surface temperature (right) averaged over land in the box 
from 80°W to 40°W and 15°S to 8°N for the COLA CGCM 
(top) and CFS (bottom).  Observations/analysis are the black 
curves, the CONTROL simulations are green, and the 
DEFOREST simulations are red. 
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Fig. 2  Precipitation for CONTROL (top, mm/day) and ERBE OLR (bottom, contour interval 10 W/m2; 
cool/warm colors in OLR correspond to high/low precipitation) for the Amazonian wet (December 
through March, left) and dry (June through November) seasons. 
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A caveat concerning these simulations is 
that CFS is not designed for long climate 
change simulations. For one thing, the CO2 
concentration is constant in time. Additionally, 
the domain for ocean-atmosphere interaction is 
non-polar, and the sea ice distribution is 
specified. Therefore, the freezing and melting 
of sea ice are not directly tied to the ocean 
temperature, which can lead to energetic and 
physical inconsistencies. 

3. Results 

a. Simulation of current climate in Amazonian 
region 

Figure 1 shows the climatology of the area 
averaged Amazon precipitation and surface 
temperature for observations/analysis, CFS, 
and the S06 COLA CGCM (consisting of the 
COLA V2 AGCM, SSiB land, and MOM3 
OGCM with anomaly coupling). The model 
climatologies are taken over the 100 simulated 
years. The observed annual mean precipitation 
is about 5 mm day-1, which is also the value 
simulated by CFS CONTROL. However, the 
COLA CGCM control simulation produces an 
annual mean precipitation of about 2 mm day-1, 
only about 40% of the observed value, and 
much too small to support a rain forest. 
Similarly, the control simulation from the 
CGCM of VR05 (consisting of the ARPEGE-
climate AGCM, ISBA land model, and LODYC OGCM) produces a very dry Amazon, with an annual mean 
rainfall of 3.5 mm day-1. The more realistic performance in the simulating the climatological precipitation was 
the main motivation for us to adopt CFS for the experiments. 

Fig. 3  Precipitation difference (mm/day) DEFOREST 
minus CONTROL, averaged from 1986 to 2085. 
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There are, however, biases in CFS that 
are obvious from Fig. 1. The amplitude of 
the annual cycle of precipitation is too large, 
as is the amplitude of the annual cycle of 
surface temperature. Additionally, the CFS 
surface temperature is about 1°C too high, 
and the COLA control simulation is closer 
to observations in this quantity. However, 
CFS has a drift in the surface temperature 
(see Fig. 6). When averaged over the first 
10 years of the simulations, CFS annual 
mean land surface temperature in the region 
of Fig. 1 is 25.2°C, which is cooler than the 
100 year mean by about 1°C and close to 
the analysis, while precipitation is not 
changed much. 

Figure 2 compares the wet and dry season 
1986-2005 climatological precipitation for 
CONTROL with the climatology of ERBE 
OLR (OLR is a commonly used a proxy for 
precipitation from deep convection). The 
precipitation distribution over the Amazon 
region in CONTROL is reasonably smoothly 
spatially distributed, although not as smooth 
as the OLR. There are some orographically-
tied features that appear to be associated with 
the Andes and which are not seen in the OLR. 
The CONTROL Amazon precipitation 
distribution appears to have a much more 
realistic spatial distribution than that found in 
S06 for the COLA AGCM. The rainfall 
deficit bias in the dry season shown in Fig. 1 
appears to be due to a severely deficient 
rainfall to the south of the equator in South 
America. 

b. Topical and subtropical changes due to 
Amazon deforestation 

The changes in precipitation and surface temperature due to the Amazon deforestation, DEFOREST 
minus CONTROL, are shown in Figs. 3 (precipitation) and 4 (temperature). Deforestation locally leads to a 
decrease in precipitation and warming of surface air temperature in the core of the deforested region for both 
the wet and dry seasons as well as the annual mean. However, there is a compensating increase in rainfall and 
associated cooling on the southeast flank of the Amazon region. 

We have conducted two sets of experiments with the GFS AGCM to separate the influences of the 
physical processes involved in our deforestation simulation. One set examines the changes in vegetation type, 
and the other the combined effects of changes in surface albedo and surface roughness. The change in 
vegetation reduces the resistance to evaporation, which leads by itself to enhanced rainfall and surface cooling. 
The increased albedo by itself would be expected to lead to decreased rainfall and surface cooling by the 
enhanced subsidence mechanism of Charney (1975); however, reduced cloudiness associated with the 
reduced rainfall acts to mitigate the surface cooling. The role of reduced roughness is less easy to anticipate, 
and we have not isolated the sensitivity to this process. When the changes are compared, the albedo/roughness 
effect turns out to be dominant.  

 
   

 
  

Fig. 4  Air temperature at 2 m difference (K), DEFOREST 
minus CONTROL, averaged from 1986 to 2085. 
Temperatures over ocean and land have different scales. 
Color bar is for temperature over land. 

 Fig. 5  Annual mean surface wind stress on ocean (dynes/cm2) 
DEFOREST minus CONTROL. 
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The remote effects of the deforestation 
include warming of the SST in the eastern 
tropical Pacific and tropical North Atlantic, and 
increased precipitation in the eastern equatorial 
Pacific, as well as widespread warming of SST 
in the northern hemisphere and southern Indian 
Ocean. Precipitation decreases in the near-
equatorial Atlantic during the dry season, and 
the western tropical Pacific. 

The changes in the Atlantic and Pacific can 
perhaps be connected to the atmospheric 
dynamical response to the local response over 
the Amazon. As shown above, the local 
response is: 1) reduction in magnitude and 
changes in distribution of the latent heat release, 
and 2) warmer surface temperature. Figure 5 
shows that the Amazon deforestation is 
associated with easterly surface wind anomalies 
in the tropical Atlantic, with northerly/easterly 
anomalies north of the equator and westerlies at 
5°S in the tropical Pacific east of the dateline. 
The precipitation and surface wind anomalies 
in the tropical Atlantic and eastern Pacific, and 
the Pacific SST are similar to those found by 
S06. However, the Atlantic response in S06 
was a cooling to the south of the equator. The 
SST changes in S06 were tentatively explained 
there as originating from a Gill-type response 
(Gill 1980) to the decreased Amazon 
atmospheric heating competing with the 
response to the increased land surface 
temperatures. The response to surface 
temperature anomalies can also be viewed as a 
Gill-type response (Neelin 1989), but with a 
smaller effective depth, although this argument 
is not commonly applied to land surface 
temperatures. According to the simple model, 
the reduction in heating would produce surface 
wind directions opposite to those seen in 
DEFOREST minus CONTROL in the 
equatorial Pacific and Atlantic near South America, while the response to the warmer surface temperature 
would produce wind directions in agreement with those found in CGCMs. To explain the results, the land 
surface temperature forcing would have to be more important in producing the surface wind over the oceans 
near the deforested region. The response to the deep heating anomaly would be expected to be the dominant 
far field response. The precipitation and Pacific SST changes in the corresponding regions in VR05 also 
appear to be similar. In contrast to CFS, VR05 also found cooling in the tropical Atlantic. 

c. Global scale changes associated with Amazon deforestation 
Figure 6 shows the global mean temperature evolution for CONTROL and DEFOREST. Both simulations 

show evidence of a significant drift or “warming commitment,” with global mean temperatures initially 
warming rapidly and then leveling off after about 60 years. This is the expected behavior if there is a net 
surface flux into the ocean (or downward top of the atmosphere heat flux) when the atmosphere is in 

Fig. 6  Global and annual mean 2 m air temperature for 
CONTROL (red) and DEFOREST (black). 

Fig. 7  Annual mean air temperature at 2 m difference (K), 
DEFOREST minus CONTROL, averaged from 1986 to 
2085. Temperatures over ocean and land have different 
scales. Color bar is for temperature over ocean. 
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equilibrium with the ocean in the current 
climate configuration. A warming commitment 
is not an indication of biases in the model, and 
in fact may indicate that the model is behaving 
realistically, so long as the initial state is 
realistic (Schneider 1996). The drift is about a 
0.5°C warming for CONTROL and 
substantially more, 0.8°C, for DEFOREST. The 
mechanism connecting deforestation to the 
larger warming is not clear; therefore we made a 
substantial effort to try to understand this result.  

The spatial distribution of the DEFOREST 
minus CONTROL surface air temperature 
change in the global domain is shown in Fig. 7 
(same data as Fig. 4 in lower latitudes). The 
warming in DEFOREST is greatest in high 
latitudes, and there is a very large warmer 
region in the North Atlantic. There is no 
obvious dynamical link between these high 
latitude regions and the Amazon. 

The large SST anomaly in the North 
Atlantic suggests the possibility of involvement 
of the Atlantic Meridional Overturning 
Circulation (AMOC). The change in the AMOC 
is shown in Fig. 8. The surface flow in the North 
Atlantic shows an increase, which is of the right 
sign to lead to warmer SST in the North Atlantic, 
but the 1 Sv magnitude of the change is too weak 
to explain the changes shown in Fig. 7. 

Further analysis shows that there may be a 
problem with the model physics in the vicinity of 
the large SST increase in Fig. 7. Figure 9 shows 
SST and heat flux from the ocean model output. 
The SST increases by order 20°C in Hudson Bay 
and the northern North Atlantic, while the heat 
flux is into the ocean in the regions of the largest 
SST increase and does not respond strongly to the 
warmer SST. Also, this strange behavior is found 
in a region where the specified sea ice is non-zero. 
If the sea ice was physically consistent with the 
SST, the warming SST would melt the ice. 
Instead, the insulating effect of the ice appears to 
be leading to enhanced warming of the SST. The 
positive heat flux into the ocean in the northern 
part of Hudson Bay and to the east in the North 
Atlantic does not seem to be physically defensible, 
especially in DEFOREST given the warm SST. 
There is also a jump in the heat flux across a line 
of constant latitude to the south of this region that 
is suspicious. It is clear that there is something 
amiss in the model, at least in DEFOREST, 

Fig. 8 Change in meridional overturning mass flux (Sv), 
DEFOREST minus CONTROL. Top: Atlantic; middle: 
Indo-Pacific; bottom: global. Positive values indicate 
clockwise circulation. 

Fig. 9  SST (left) and net downward surface heat flux 
(right, W/m2) for DEFOREST (top), CONTROL 
(middle), and DEFOREST minus CONTROL 
(bottom). 
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which needs to be diagnosed, understood, and corrected before going further with this investigation. The 
obvious candidate processes are the sea ice and high latitude oceanic sponge layers. 
4. Conclusions 

We investigated the response of the coupled atmosphere-ocean-land system to a hypothetical complete 
Amazon deforestation. The purpose of the investigation was to identify the sensitivity of the climate system to 
changes in the land surface properties. The local changes were a general warming and drying in the Amazon 
region, primarily caused by to the changes in the surface albedo and roughness. The remote effects included 
warming of the eastern tropical Pacific and tropical Atlantic, increased precipitation in the eastern equatorial 
Pacific, and reduced precipitation in the equatorial Atlantic. The precipitation and Pacific SST changes are in 
agreement with other similar studies, indicating that these changes may be robust. However, the SST changes 
in the tropical Atlantic are opposite in sign to those in the other studies. The SST changes are apparently due 
to the influence on the ocean of the dynamical response of the atmosphere to the warmer Amazon surface 
temperatures, since the reduction in latent heat release would be expected to lead to the opposite effects on 
surface winds and hence tropical SST. 

There was little effect on ENSO SST variability in CFS. S06 found an increase in ENSO amplitude from 
Amazon deforestation and attributed this to changes in the basic state (i.e. the changes in the ocean thermal 
structure climatology). However, the ENSO variability in CFS appears to be associated with stronger coupled 
instability and a more regular oscillation than in the COLA CGCM. Possible reasons for the lack of sensitivity 
of ENSO in CFS compared to the COLA CGCM then may be either the stronger coupled instability, the 
smaller warming in the land surface temperature and consequently smaller changes in the ocean thermal 
structure, or the secular warming in CFS. 

The long simulations showed that CFS has a warming climate commitment of order 0.5°C for current 
initial states and the constant modern climate CFS CO2 concentration. Amazon deforestation apparently 
enhances the global mean warming, but this effect appears to have been due to a problem in the model 
physics that needs to be investigated, and which may be connected to the code modifications we made. 
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ABSTRACT 
The impacts of freshwater flux (FWF) forcing on interannual variability in the tropical 

Pacific climate system are investigated using a hybrid coupled model (HCM), constructed from 
an oceanic general circulation model (OGCM) and a simplified atmospheric model, whose 
forcing fields to the ocean consist of three components. Interannual anomalies of wind stress 
and precipitation minus evaporation, (P-E), are calculated respectively by their statistical 
feedback models that are constructed from a singular value decomposition (SVD) analysis of 
their historical data. Heat flux is calculated using an advective atmospheric mixed layer (AML) 
model. The constructed HCM can well reproduce interannual variability associated with El 
Niño-Southern Oscillation (ENSO) in the tropical Pacific.  

HCM experiments are performed with varying strength of anomalous FWF forcing. It is 
demonstrated that FWF can have a significant modulating impact on interannual variability. 
The buoyancy flux (QB) field, an important parameter determining the mixing and entrainment 
in the equatorial Pacific, is analyzed to illustrate the compensating role played by its two 
contributing parts, one is related with heat flux (QT) and the other with freshwater flux (QS), 
respectively. A positive feedback is identified between FWF and sea surface temperature (SST) 
as follows. SST anomalies, generated by El Niño, non-locally induce large anomalous FWF 
variability over the western and central regions, which directly influences sea surface salinity 
(SSS) and QB, leading to changes in the mixed layer depth (MLD), the upper ocean stability, 
the mixing and the entrainment of subsurface waters. These oceanic processes act to enhance 
the SST anomalies, which in turn feedback to the atmosphere in a coupled ocean-atmosphere 
system. As a result, taking into account anomalous FWF forcing in the HCM leads to an 
enhanced interannual variability and ENSO cycles. It is further shown that FWF forcing is 
playing a different role from heat flux forcing, with the former acting to drive a change in SST, 
while the latter being representing a passive response to the SST change. This HCM based 
modeling study presents clear evidence for the role of FWF forcing in modulating interannual 
variability in the tropical Pacific. The significance and implications of these results are further 
discussed for physical understanding and model improvements of interannual variability in the 
tropical Pacific ocean-atmosphere system.  

1. Introduction 

The ocean is a key player in climate variability and predictability on various time-space scales. Largely 
driven by atmospheric forcing, the induced physical changes in the ocean can feedback to the atmosphere by 
which the principal oceanic quantity felt is sea surface temperature (SST). Numerous studies have identified 
roles of various forcings and feedbacks in the climate system, including the Bjerknes feedback (e.g., 
Bjerknes 1969), the wind-evaporation-SST (WES) feedback (e.g., Xie and Philander 1994), the SST-solar 
radiation feedback (e.g., Waliser et al. 1994), and others. In the past, most studies have emphasized the 
forcing and feedback effects of atmospheric wind and heat flux on the coupled ocean-atmosphere system. 
Another less focused atmospheric forcing component to the ocean is freshwater flux (FWF) which has direct 
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effects on ocean salinity, an important variable in climate and the water cycle. While sea surface salinity 
(SSS) has no direct and immediate influence on the atmosphere, its variations can be forced by atmospheric 
FWF perturbations, which can further modify the oceanic density fields, the mixed layer depth (MLD), the 
mixing and entrainment, all of which can affect SST. For example, FWF forcing and its related salinity effect 
have been demonstrated to play an important role in climate variability in the North Atlantic, being 
recognized as a driving force for the thermohaline circulation and its fluctuations (e.g., Schmitt et al. 1989). 

In the tropical Pacific, a predominant role of wind forcing has been demonstrated in interannual climate 
variability associated with ENSO, involving a feedback loop among the SST, winds and the thermocline (i.e., 
the Bjerknes feedback). The associated interannual changes in SST induce coherent fluctuations in the 
atmospheric circulation, including precipitation (P) and evaporation (E), whose interannual variabilities have 
been well documented in association with ENSO (e.g., Xie and Arkin 1995;Yu and Weller 2007). These 
large variations of P and E are reflected in those of freshwater flux. 

Over the tropical Pacific region, the major contribution to interannual variations in FWF comes from a 
net difference between P and E, with a dominance of the former over the latter. Indeed, associated with 
ENSO, interannual FWF variability shows a close relationship with SST in the tropical Pacific. During El 
Niño, SSTs are warm in the central and eastern equatorial Pacific, accompanied by an increase both in P and 
E in the central basin. Due to the dominance of P over E, a warming is associated with a positive FWF 
anomaly (an anomalous flux into the ocean). During La Niña, cold SST anomalies are accompanied by a 
reduction both in P and E in the central basin. The resultant FWF anomaly is negative (an anomalous loss of 
freshwater from the ocean). Thus, interannual variations in FWF present a non-local positive correlation with 
SST during ENSO cycles. This is contrasted to those in heat flux which have been demonstrated to have a 
negative correlation with SST (e.g., Barnett et al. 1991; Wang and McPhaden 2001). 

Recent studies indicate that FWF forcing and its directly related changes in salinity can play an active 
role in maintaining the Pacific climate and its low-frequency variability through their effects on the 
horizontal pressure gradients, the stratification, and the equatorial thermocline. Clearly, FWF forcing and its 
related feedback need to be taken into account in modeling studies due to its large interannual anomalies 
induced by ENSO. 

At present, FWF forcing has not been adequately represented in simplified models. In most previous 
modeling studies, the effects of FWF forcing have been demonstrated mostly in forced ocean-alone 
experiments. For example, idealized anomalous FWF forcing fields are perpetually prescribed to examine the 
response of the ocean (e.g., Reason 1992; Yang et al. 1999; Huang and Mehta 2004, 2005). Since the ocean-
atmosphere is not coupled, there is no feedback from the changes in the ocean induced by FWF forcing to the 
atmosphere. Various coupled ocean-atmosphere models for the tropical Pacific have been developed for use 
in ENSO-related modeling studies, including intermediate coupled models (ICMs), hybrid coupled models 
(HCMs), and coupled general circulation models (CGCMs). However, FWF forcing has not been adequately 
represented in most state-of-the-art coupled models. For example, FWF has not been even included in most 
ICMs and HCMs used for simulation and prediction of ENSO (e.g., Zebiak and Cane 1987; Barnett et al. 
1993; Syu et al. 1995; Zhang et al. 2003, 2005, 2006; Zhang and Zebiak 2004). In CGCMs, the FWF forcing 
is included, but has not been realistically simulated. In particular, the so-called double ITCZ (the intertropical 
convergence zone) problem is still a big challenge to CGCM simulations in the tropical Pacific; most models 
tend to have excessive precipitation over the ITCZ in the tropical Pacific. This deficiency in precipitation 
simulation is reflected in the FWF field, resulting in large and systematic biases that affect the ocean. In 
addition, large uncertainties exist in observational estimates of P and E from different sources and products. 
Thus, FWF forcing remains a challenge to be represented realistically in diagnostic analyses and coupled 
modeling studies. 

Indeed, previous modeling studies have mostly focused on the roles of atmospheric forcing components 
of winds and heat flux in the coupled ocean-atmosphere system of the tropical Pacific; FWF forcing and its 
related salinity effect on climate variability have not been getting much attention. In addition, its effects have 
been examined mostly in ocean-only modeling studies. In a coupled ocean-atmosphere system, changes in 
SST induced by FWF forcing can feedback to the atmosphere. But, these have not been clearly illustrated in 
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Fig. 1   A schematic diagram illustrating a hybrid coupled model 
(HCM) for the tropical Pacific ocean-atmosphere system, 
consisting of an OGCM and a simplified atmospheric model, 
whose forcing fields to the ocean include three components: 
wind stress, freshwater flux and heat flux, respectively. The 
total wind stress (τ) consists of prescribed climatological wind 
stress (τclim) from observations and its interannual anomalies 
(τinter) associated with large scale SST anomalies (SSTinter); the 
total freshwater flux (FWF), represented by precipitation 
minus evaporation (P-E), consists of prescribed climatological 
freshwater flux [(P-E)clim] and  its interannual anomalies [(P-
E)inter]; heat flux (HF) is calculated using the Seager et al. 
(1995) advective atmospheric mixed layer (AML) model. 
Empirical submodels for τinter and (P-E)inter fields  are 
constructed using a singular value decomposition (SVD) 
analysis.  Buoyancy flux (QB) is calculated from the heat flux 
and freshwater flux to force a mixed layer model which is 
embedded in the OGCM. Climatological SST (SSTclim) fields 
are specified  from a spinup run of the OGCM forced by 
observed climatological atmospheric fields. 
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a coupled ocean-atmosphere context. Although CGCMs include the FWF forcing, its impact on interannual 
variability has rarely been diagnosed explicitly. Furthermore, FWF-induced feedback can also influence the 
strength of other forcings and feedbacks in the coupled system. For example, the changed SSTs induced by 
FWF forcing can modulate heat flux forcing which has been demonstrated to provide a negative feedback to 
interannual SST variability in the tropical Pacific. Then, what are the net effects of these related feedbacks on 
interannual variability? Moreover, ENSO has been observed to change significantly from one event to 
another. Many factors have been identified that can modulate ENSO amplitude (e.g., Zhang and Busalacchi 
2005; Zhang et al. 2008). As demonstrated in previous forced ocean-only simulations, FWF forcing can 
induce large changes in SST, indicating the potential for modulation of ENSO. However, the extent to which 
FWF forcing can play a role is not known. 

In this work, a hybrid coupled 
modeling approach is taken to isolate the 
influences of anomalous FWF forcing on 
salinity and interannual variability in the 
tropical Pacific. The HCM developed at 
ESSIC (Zhang et al. 2006) consists of a 
layer ocean general circulation model 
(OGCM) and an empirical atmospheric 
model for interannual wind stress 
variability. In particular, as with wind 
forcing component, an additional 
empirical model has been developed to 
take into account interannual FWF 
variability that is explicitly related to SST 
anomalies. The FWF model is constructed 
from a SVD of the covariance matrix that 
is calculated from time series of monthly 
mean SST and (P-E) fields. Then, using 
this empirical (P-E) model, a FWF 
anomaly can be estimated from a given 
SST forcing, which can be included in the 
HCM to account for its related possible 
feedback. In addition, heat flux in the 
HCM is calculated using an advective 
atmospheric mixed layer (AML) model 
developed by Seager et al. (1995). Thus, 
the HCM has three atmospheric forcings 
to the ocean: wind stress, heat flux and 
freshwater flux, respectively. In this study, 
our focus is on the roles of anomalous 
FWF forcing in modulating interannual 
variability. 

2. Model descriptions 
Figure 1 shows a schematic of the 

various components of a HCM, recently 
developed at ESSIC (Zhang et al. 2006). 
The HCM consists of a layer OGCM and a 
simplified atmospheric representation of 
three forcing fields to the ocean, including the two empirical submodels for interannual wind stress and FWF 
variability, respectively. For more details, see Zhang and Busalacchi (2009). 



Fig. 2   Anomalies along the equator simulated from the 
HCM with the interannual FWF forcing: (a) SST, (b) zonal 

 wind stress, and (c) SSS. The contour interval is 0.5 °C in 
 (a), 0.1 dyn cm-2 in (b), and 0.1 psu in (c), respectively. 
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3.  The effects of anomalous FWF forcing 

The HCM will be used to examine the 
effects of FWF forcing on interannual 
variability in the tropical Pacific. When the 
FWF forcing is included in the HCM (Fig. 
1), the total FWF exchange between the 
atmosphere and ocean can be written as: 
FWF = (P-E)clim+ αFWF • (P-E)inter, in which 
its climatological  part, (P-E)clim, is specified 
(the  Pclim is from observation;  the Eclim is 
estimated from simualted SSTclim fields 
using the advective AML model).  Its 
anomalous part, (P-E)inter, is calculated using 
the SVD-based empirical model from 
interannual SST anomalies. The coefficient, 
αFWF, represents the strength of the 
anomalous FWF forcing. A standard run is 
performed with interannual (P-E)inter forcing 
(αFWF = 1). Basically, the HCM with αFWF = 
1 can quite well produce the mean ocean 
climatology and its interannual oscillations 
with about 4-year period (Fig. 2).  We then 
perform two more HCM experiments using 
the identical OGCM that is coupled to the 
same SVD-based atmospheric wind stress and 
(P-E) models, but with differing αFWF values to 
represent the strength of anomalous FWF
forcing: a climatological FWF forcing run
(αFWF = 0.0; the (P-E)clim run) and an enhanced 
FWF forcing run (αFWF =2.0). 

The effects of anomalous FWF forcing on 
some selected variables are quantified in Table 
1. As analyzed above, the relationships among 
interannual anomaly fields indicate a positive 
effect of   FWF forcing on SST during ENSO 
cycles. In the standard (P-E)inter run (αFWF =1.0),
the positive feedback between SST and FWF is 
included in the HCM simulation. The FWF 
anomalies induce additional ocean processes in 
such a way to reinforce the warming during El 
Niño and cooling during La Niña, respectively. 
The enhanced SST anomalies further increase 
interannual variability in the coupled system. 
When the positive SST-FWF relationship is not 
included as in the climatogical FWF forcing 

Ta

Nino4  αFWF= 0.0 αFWF= 1.0 αFWF= 2.0 
region (Clim run) 

SSS 0.11 
SST 0.76 

(Standard run) 

0.16 
0.85 

(Enhanced run) 

0.28 
0.97 

MLD 5.6 6.7 9.0 
τ 0.16 0.19 0.23 

1.49 QT 1.72 1.95 
0.0 QS 0.65 1.58 
1.49 QB 

Nino12 SST 0.53 

1.24 

0.57 

1.08 

0.64 

Nino3 SST 0.67 0.76 0.92 

ble 1  The standard deviation of some selected anomaly fields from the HCM simulations with the 
climatological (αFWF = 0.0), the standard (αFWF = 1.0) and enhanced (αFWF = 2.0) FWF forcings, respectively. 
Shown at the Niño4 region are for SSS, SST, MLD, zonal wind stress (τ), buoyancy flux (QB) and its heat flux 
part (QT) and freshwater flux part (QS).  Also shown in the last two rows are for SST at the Niño12 and Niño3 
sites. The unit is: psu for SSS, °C for SST, meter for MLD, dyn cm-2 for τ, 10-6 Kg s-1 m-2 for QB and QT and 
QS, respectively. 
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run (αFWF = 0.0), these additional oceanic effects that  could be induced by the FWF forcing are disabled, and 
there is no positive feedback. As a result, the simulated interannual variability in the αFWF = 0.0 run is 
weakened as compared with that in the αFWF = 1.0 run. When the anomalous FWF forcing is enhanced as  
represented in the αFWF = 2.0 run, its obvious direct effects are to increase the temporal variability of SSS and 
MLD in the central basin. Also, it increases the compensating effect of QS on Q T, with a net reduction in QB  
variability. All these processes tend to cause more warming during El Niño and more cooling during La Niña,  
which acts to reinforce SST variability during ENSO cycles. As the positive feedback is exaggerated, a  
stronger interannual variability emerges. Clearly, the oceanic processes induced by the FWF forcing and the 
related feedback act in such a way to enhance the strength of ENSO cycles. 

4. Concluding remarks 

Most previous modeling studies have focused on the roles of atmospheric forcing components of winds  
and heat  flux; FWF forcing and its related salinity role in coupled climate variability have not received much  
attention. Furthermore, the effects of FWF forcing have been examined mostly in  forced ocean-only  
modeling studies. In this work, the impacts of FWF forcing on salinity and interannual variability are 
examined  in a hybrid coupled ocean-atmosphere context in which climatological atmospheric forcing fields  
of wind and FWF are specified, while their anomaly parts can be added on or off separately or collectively.  

We have designed various experiments using the HCM with differing strengths of anomalous FWF 
forcing. Three cases are considered. In a standard simulation, the climatological and anomalous FWF fields  
are both taken into account [i.e., FWF = (P-E)clim+(P-E)inter]. The constructed HCM can well reproduce  
interannual variability associated with ENSO in the tropical Pacific.  Two more sensitivity  experiments are 
then performed using the HCM with the climatological forcing only [i.e., FWF = (P-E)clim  ] and an enhanced  
FWF forcing run [i.e., FWF = (P-E)clim+ 2.0•(P-E)inter], respectively.  

Interannual variability in the tropical Pacific is predominantly driven by wind-induced feedback; 
simulations with climatological FWF forcing still show large interannual variability of SSS and SST in the 
tropical Pacific with basic feature unchanged. This indicates that wind forcing  is of primary importance for 
dynamics of interannual variability in the tropical Pacific climate system. However, a significant effect can  
be seen, arising from  anomalous FWF forcing. Quantitatively, taking the (P-E)inter run as a standard, the SST  
variance at the Niño3 site can be reduced by about 12%  in the climatological FWF forcing run, but enhanced 
by 21% in the enhanced FWF forcing run; the   variances for SSS and zonal wind stress at the Niño4 site are 
reduced by about 31% and 16% in the climatological FWF run, but enhanced by 16% and 75% in the 
enhanced FWF forcing run, respectively. Thus, anomalous FWF forcing can modulate interannual variability 
in a substantial way.  
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1. Background 

As shown by Shukla and Mintz (1982) and many subsequent studies (e.g., Delworth and Manabe 1988; 
Atlas et al., 1993), the presence or absence of water at the land surface can have a profound effect on the 
seasonal climate. Koster et al. (2004) showed that that effect can vary considerably over the planet, with its 
most pronounced impacts occurring in the semi-arid transitional zones that often lie between humid regions 
and deserts. They also showed that the various coupled land-atmosphere models used to gauge this effect 
disagree considerably on its magnitude. These results have also been borne out in several subsequent studies, 
which indicate that the presence or absence of moisture in the soil enhances the predictability at intraseasonal 
and longer time scales (e.g., Wang and Kumar, 1998; Fennessy and Shukla, 1999; Yang et al. 2004).  

As part of a project is to explore the efficacy of using the Community Climate System Model (CCSM), in 
conjunction with the NOAA Climate Forecast System (CFS), to provide a multi-model ensemble of climate 
predictions that are superior to predictions made with either model alone, we have developed methods to 
initialize the land and atmosphere model components of the CCSM and CCSM with observed states. Using 
that process, along with the ocean initial state produced at the University of Miami, we produced a set of one-
year re-forecasts. In parallel to this effort, we produced similar re-forecasts for which only the Parallel Ocean 
Program (POP), the ocean model component of CCSM, was initialized.   

2. Experimental setup  

Model: The model used in this study is the CCSM3 (Collins et al., 2006), which is a coupled ice-
oceanatmosphere- land climate model with state-of-the-art formulations of dynamics and subgrid-scale 
physical parameterizations. The atmosphere is Community Atmospheric Model (CAM3, Eulerian dynamical 
core) at T85 (~150 km) horizontal resolution with 26 vertical levels. Experiments have been conducted with 
both the CAM3.0 and CAM3.5 versions of the subgrid-scale physical parameterizations, referred to as the 
CCSM3.0 and CCSM3.5 experiments, respectively. The ocean model is the standard version of POP with 1º 
resolution, stretched to 1/3º near the equator.  

Re-forecast Experiments: Retrospective forecasts cover the period 1981-2000 (1982–1998) with initial 
states in January (July). One set of runs was made with observed initial states for the global ocean (OCN-
only; Kirtman and Min, 2009), and one set of runs was made with full initialization of the global atmosphere, 
ocean, and land surface (ATM-OCN-LND). Ensembles of 4 (10) and 6 (10) hindcasts were run in the OCN-
only (ATM-OCN-LND) experiments for the January and July cases, respectively.  

Ocean Initialization: In all experiments, the ocean initialization uses the GFDL ocean data assimilation 
system, based on the MOM3 global ocean model with a variational optimal interpolation scheme. The GFDL 
ocean initial states were interpolated (horizontally and vertically) to the POP grid using a bi-linear 
interpolation scheme. (Climatological data from long simulations of CCSM3 were used poleward of 65°N and 
75°S.) The ocean initial state is identical for each ensemble member. 

Atmosphere and Land Initialization: In the OCN-only experiments, the atmospheric and land surface 
initial states were taken from an extended atmosphere/land-only (CAM3) simulation with observed, 
prescribed SST. The atmospheric ensemble members were obtained by resetting the model calendar back one 
week and integrating the model forward one week with prescribed observed SST. In this way, it is possible to 
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Calverton, MD 20705; E-mail: kinter@mail.iges.org 
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Fig. 1  (Top row) Forecasts at 7-month lead time of the monthly mean 
soil moisture anomaly in the top 9 cm of soil in the contiguous U.S. 
(Bottom row) Analyzed values of soil moisture in the top 10 cm, 
based on the Global Soil Wetness Program (GSWP) analysis. In both 
rows, the left panels are for July 1993 and the right panels are for 
July 1988. All anomalies are normalized by their respective standard 
deviations, based on 18 years of data, at each grid point. 
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generate initial conditions that are synoptically independent (separated by one week) but have the same initial 
date. Thus all ensemble members were initialized at the same model clock time (1 Jan or 1 July) with 
independent atmospheric initial conditions. 

In the ATM-OCN-LND experiments, land and atmosphere were initialized for each of the 10 days 
preceding the date of each ocean initial state - 22-31 December for the 1 January ocean states, and 22-30 June 
for the 1 July ocean dates. The atmosphere was initialized by interpolating from daily reanalysis data. The 
land surface was initialized from daily Global Soil Wetness Project analyses (GSWP-2; 1986- 1995) and daily 
ERA40 (1982-1985 and 1996-1998). The observed anomalies were superimposed on a climatology for the 
Common Land Model (CLM), which is a component of the CCSM. The snow depth was initialized from 
ERA40, and the sea-ice was initialized to climatological monthly conditions based on a long simulation of 
CCSM3.0. 

3. Results 

Using the results of both sets 
of re-forecasts (OCN-only and 
ATM-OCN-LND), we performed 
an analysis with an eye to gauging 
the benefits of initializing 
CCSM3.0 with the observed 
atmospheric, land and ocean states 
in comparison to initializing with 
only the observed ocean state. We 
expect that a large part of the 
monthly to seasonal predictability 
in the atmosphere and land as 
simulated by the CCSM will be 
forced by temperature anomalies 
at the ocean surface. The working 
hypothesis is that a major factor in 
any enhanced predictability in the 
ATM-OCN-LND re-forecasts will 
be driven by long-term, large-
scale anomalies of soil moisture. 
Therefore, we have focused on the 
predictability of the land surface 
and near surface variables. 

As an example of what can be gained by initializing the land surface, Fig. 1 shows the soil moisture 
anomalies at 7-month lead time for forecasts initialized in January 1993, an extreme flood year, and January 
1988, an extreme drought year. In 1993, the upper Mississippi valley was well above normal soil moisture 
with positive anomalies to the northwest and anomalously dry conditions to the south and east. During the 
1988 drought, the center of the dry anomaly was in the northeastern U.S., with dry conditions extending to the 
west through the upper Mississippi valley and the high plains of the northwest. Wetter than normal conditions 
were present in the semi-arid and desert region of west Texas and the southwest. The predicted pattern of 
anomalies, and to a lesser extent the predicted intensity, closely resemble the observed pattern in both cases, 
except the wet anomaly in the southwest.  

More broadly, Fig. 2 shows the correlation of observed and first month forecast of soil moisture in the top 
3 layers of the CLM, for both ATM-OCN-LND and OCN-only forecasts, and for both experiments, from the 
end of December and the end of June ICs. The observations are taken from the ERA-40, and represent the 
first layer of the TESSEL soil model, which has a depth of 7 cm. We used this same data to initialize CLM for 
1981-1985 and 1996-1999. A different land surface data set from the GSWP-2, was used for 1986-1995. The 
forecasts with initialized soil moisture anomalies produce a much better forecast of soil moisture anomalies in 



 

 

 

 
 
 

 

 

 

 
 

 

 

 

  

 

 

 

 
  

Fig. 2  A) Correlation of January monthly soil moisture in the top 9 cm from 
the CCSM3.5 Atm+Lnd+Ocn forecast initialized end of December versus 
January ERA-40 soil moisture in the top 7 cm; for Jan. 1981-1998. B) As 
in Fig. 2A, but for CCSM3.5 Atm+Lnd+Ocn forecast initialized end of 
June versus July ERA-40 soil moisture; for July 1982-1998. C) As in Fig. 
2A, but for the CCSM3.5 Ocn only forecast initialized 1 January. D) As in 
Fig. 2A, but for the CCSM3.5 Ocn only forecast initialized 1 July. Shading 
indicates correlations significant at 95% and 99% levels. 

  

 
 

Fig. 3  A) Correlation of January monthly 2 meter temperature over land from 
the CCSM3.5 Atm+Lnd+Ocn forecast initialized end of December versus 
CAMS observed surface temperature, for Jan. 1981-1998. B) As in Fig. 
3A, but for the CCSM3.5 Atm+Lnd+Ocn forecast initialized end of June; 
for July 1982-1998. C) As in Fig. 3A, but for the CCSM3.5 Ocn only 
forecast initialized 1 January. D) As in Fig. 3B, but for the CCSM3.5 Ocn 
only forecast initialized 1 July.  Shading indicates correlations significant 
at 95% and 99% levels. 

67 KINTER ET AL. 

the first month. This is 
especially impressive, 
considering that these top 
three layers represent a total 
depth of only 9 cm. These 
maps also highlight an 
obvious benefit from 
initializing with observed 
snow depth. Those areas 
with persistent winter snow 
cover (and presumably 
frozen soil underneath) will 
tend to preserve their initial 
soil moisture anomalies. 
Similar correlation maps for 
the mid-layer (9-29 cm) 
CLM soil moisture (not 
shown) show the same 
results for month one, with 
generally higher positive 
correlation. 

Similar, though less 
impressive results, are 
present in the forecasts of 
the first season (JAS, JFM) 
soil moisture (not shown). 
Longer range forecasts are 
adversely affected by the 
tendency of the simulated 
soil moisture in CLM3.0 to 
dry out over time. We hope 
that improvements in the 
CLM3.5 will reduce these 
systematic errors. 

Figure 3 shows the 
correlation of the 2-meter 
temperature for the first 
month of the re-forecasts 
with observed surface 
temperature as represented 
by the CAMS dataset 
(Ropelewski et al., 1985). 
Temperatures over the 
ocean have been masked out 
in order to focus on the land; 
since the two forecasts 
begin with the same ocean 
initial state, the correlations 
are close to identical. The 
simulation of the land 
surface temperature is 
clearly superior for the ATM-OCN-LND case, especially for the forecasts from 1 January ICs. In general, 



 

 

 

 

 

 
 
 

 

  

 

  
  

   

 

Fig. 4  A) Correlation of January monthly precipitation from the CCSM3.5 
Atm+Lnd+Ocn forecast initialized end of December versus CMAP 
observed precipitation, for Jan. 1981-1998. B) As in Fig. 4A, but for the 
CCSM3.5 Atm+Lnd+Ocn forecast initialized end of June; for July 1982-
1998. C) As in Fig. 4A, but for the CCSM3.5 Ocn only forecast initialized 
1 January. D) As in Fig. 4B, but for the CCSM3.5 Ocn only forecast 
initialized 1 July. Shading indicates correlations significant at 95% and 
99% levels. 

 
 
 

 

Fig. 5  Time series indices of an index of 
February – April rainfall over the Nordeste 
region of Brazil for the OCN-only forecasts 
(blue curve), the ATM-OCN-LND forecasts 
(red curve), in comparison with the same 
index computed from the CMAP 
precipitation analysis (black curve). 
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those areas in Fig. 2 with 
a good forecast of soil 
moisture tend also to have 
a good forecast of surface 
temperature. Figure 3 
again suggests that there 
may be some benefit 
derived from the 
initialization of the snow 
depth. The correlation 
over snow-covered areas 
is generally good (e.g., 
note southern South 
America in Fig. 3b.)  Also 
note the significant 
correlation over northwest 
Europe, where the 
correlation of forecast and 
observed soil moisture 
was not significant. 

Figure 4 shows the 
first month forecast of 
total precipitation versus 
observation as represented 
by CMAP (Xie and Arkin, 
1997). There is little 
evidence that the ATM-OCN-LND initialization has 
provided much improvement in the forecast of 
precipitation over land, with the possible exceptions 
of Brazil and Australia in the end-of-June forecasts. 
Curiously, there is evidence of an improvement in 
the simulation of precipitation over the oceans, 
particularly in the extra-tropics in winter. If this 
improvement were to have arisen from the 
difference in initialization, it would seem more 
likely to be due to the atmospheric initialization, 
which might impart some skill to the first month’s 
forecast. It might also be just an artifact of the 
smaller sample in the OCN-only forecasts, which 
had only four and six members for the 1 January 
cases and 1 July cases, respectively. We will 
investigate further. 

We studied specific instances of the ability of 
our forecast system to simulate climate and 
predictability of seasonal anomalies. For example, 
indices of FMA rainfall over the Nordeste region of 
Brazil for both the ATM-OCN-LND and OCN-only 
forecast precipitation (Fig. 5) provide a good 
approximation of the variability of an identical index 
constructed from observed rainfall. We also note that the climatology of the monsoon rainfall over India is 
well simulated by both sets of forecasts (not shown); although both of the forecasts do a poor job of 
reproducing the interannual variability. 
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4. Future work - CCSM3.5 

We have updated and improved our initialization methods for CCSM3.5, and have begun producing 
retrospective forecasts. 
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1. Introduction 

One of the largest uncertainties in climate 
simulations is from the representation of land 
processes, because there are few observations 
to calibrate or constrain it. Different land 
surface schemes (LSSs) use quite different 
parameterizations to describe the complex 
hydrological, biogeophysical, and 
biogeochemical processes. Even when forced 
by the same atmospheric forcing and provided 
the same parameter settings, different LSSs 
can still give significantly different surface 
fluxes. When these LSSs are coupled to the 
Atmospheric General Circulation Models 
(AGCMs), their different behaviors will bring 
uncertainties into the simulated climate. As the 
land-atmosphere system is nonlinear, 
uncertainties from LSSs can be amplified or 
reduced during land-atmosphere interaction. 
This problem is systemically addressed in this 
study. In addition to the climatology and 
variability, different LSSs can lead to different 
coupling strength between land and 
atmosphere (i.e., contribution of land to 
prediction of atmosphere). Within the 
framework of Global Land-Atmosphere 
Coupling Experiment (GLACE), we perform 
GLACE-type experiments to investigate this 
problem.  

In this study, we show results from COLA AGCM coupled to three state-of-the-art LSSs: SSiB, CLM3.5, 
and Noah. Two experiments are performed. In the first experiment (I), three LSSs are coupled to the AGCM 
individually. In the second experiment (C), the three LSSs are coupled to the AGCM in combination, i.e. the 
LSSs receive the same atmospheric forcing from the AGCM and the average surface fluxes from the LSSs are 
passed back to the AGCM at each grid point and at every time step. Experiment C is similar to three land 
model offline experiments with a same atmospheric forcing, but this forcing is affected by the average 
feedback from the LSSs. 

We try to investigate the uncertainties of the three LSSs and their influence on climate simulation. We 
also explore the influence of land-atmosphere coupling on the simulation uncertainties. In addition, GLACE-
type experiments with the COLA AGCM coupled to three land models are performed. By comparing the 
coupling strength of the three coupled models, we can know the impact of different land models on the 
coupling strength. In summary, the purpose of this study is threefold: firstly, to investigate current 
uncertainties in the behavior of LSSs; secondly, to investigate how much these uncertainties can influence 

Correspondence to:  Jiangfeng Wei, Center for Ocean-Land-Atmosphere Studies, 4041 Powder Mill Road, Suite 302, 
Calverton, MD 20705; E-mail: jianfeng@cola.iges.org 

Fig. 1  The ratio  Φ (see equation 1) for 1987-2004 average 
JJA latent (LH; upper panel) and sensible (SH; bottom 
panel) heat fluxes. The regions enclosed by blue boxes 
are for further analysis in Figure 2. 
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atmospheric simulation through land-
atmosphere interaction; thirdly and most 
importantly, to have a better understanding 
of the mechanisms of land-atmosphere 
coupling.   

2. Climatology  

The three LSSs produce significantly 
different surface fluxes over most of the 
land, no matter whether they are coupled 
individually (different forcing to land) or in 
combination (same forcing to land). See 
Wei et al. (2009a) for a detailed discussion. 
A question is whether land-atmosphere 
interaction can amplify the uncertainties 
from LSSs if they are coupled to an AGCM. 

Let Var(I) and Var(C) be the inter-
model (3 cases) variances of fluxes from 
land to atmosphere in experiments I and C, 
respectively. Intuitively, Var(I) should be 
larger than Var(C) because the LSSs 
receive the same atmospheric forcing in C 
but not in I. Thus Var(I) is the inter-model 
variance caused by LSS differences and 
land-atmosphere feedback, while Var(C) is 
the variance caused by LSS differences 
only. Then the ratio  

Var(I ) − Var(C)
Φ = 

Var(I ) 

is the percentage of inter-model variance 
caused by land-atmosphere feedback. If 
Var(I)≥Var(C), 0≤Φ≤1. However, if 
Var(I)<Var(C) (Φ<0), a negative feedback 
between land and atmosphere is implied 
and we cannot estimate the relative contributions of LSS differences and land-atmosphere interactions to the 
variance. 

Figure 1 shows Φ averaged over JJA for sensible heat (SH) and latent heat (LH) fluxes. Over most land 
area, 0≤Φ≤1. However, there are still some areas with Φ<0. SH should have the same inter-model variance as 
LH if Rnet and the relatively small ground heat flux are the same for the LSSs. However, Rnet differs a lot 
among the models over some high latitude regions and dry regions. This is why the Φ values of SH and LH 
differ most over these regions (Figure 1). In order to investigate the cause of the different spread changes 
(positive and negative Φ), we selected the northern Eurasia and Sahel as two regions with contrasting values 
of Φ (blue boxes in Figure 1). Figure 2 shows the time series of LH, net shortwave radiation at surface (SWnet), 
total cloud cover, and precipitation over these two regions. It is evident that, compared to experiment I, the 
LH in experiment C strongly converge in Sahel but diverge in northern Eurasia, consistent with the value of Φ. 
In Sahel, the interannual time series of LH are negatively correlated with those of SWnet but are positively 
correlated with those of cloud cover and precipitation. This is a semi-arid, moisture-limited area, where 
evapotranspiration (ET) is nominally below the potential rate, so LH is strongly controlled by the land surface 
states, especially soil wetness, which is largely determined by rainfall. In experiment C, each LSS experiences 
the same rainfall, which leads to similar soil wetness and LH. In northern Eurasia, however, the correlation 

Fig. 2  The simulated 1987-2004 JJA average LH, SWnet, total 
cloud cover, and precipitation for northern Eurasia (left 
column) and Sahel (right column). The areas of the two 
regions are marked by blue boxes in Figure 1. 



 

 

 

 

 
 

 

 

 

  

 

 

 
 
 

 
  

  

 

 

 

   

 
  

   
 

 
  

 

  

Fig. 3  The JJA lag-2-pentad autocorrelation of precipitation across 1987-
2004. (a) COLA-SSiB. (b) COLA-CLM. (c) COLA-Noah. (d) 
Combined experiment. (e) Calculated with the average precipitation of
the three individually coupled simulations. (f) From the observational
dataset of GPCP (Xie et al. 2003). The model results are interpolated to 
the same grid as that of GPCP data (2.5°×2.5°). Values larger than 0.11 
are over 95% confidence level. Seasonal cycles are not removed in this 
calculation; removing them can lead to results with similar patterns but 
smaller amplitude. 
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between SWnet and LH is 
positive for most of the time 
series. The soil moisture is 
plentiful in this region and the 
control on LH is mainly the 
radiation at surface. 

3. Variability 

The memories inherent in 
the surface heat fluxes differ 
greatly among the LSSs (see 
Wei et al. (2009a) for a detailed 
discussion). It would be 
interesting to examine how the 
different memories of land 
surface fluxes can influence 
precipitation variability. Figure 
3 shows the lag-2-pentad 
precipitation autocorrelation in 
JJA. This method has been used 
in previous studies and is based 
on the assumption that a wetter 
soil caused by a storm may last 
a few days and promote future 
storms (Koster et al. 2003). 
However, there is also 
possibility that this persistence 
of precipitation is caused by the 
internal atmospheric dynamics 
or some other external forcing 
(e.g., SST) and has nothing to 
do with soil moisture memory 
(Wei et al. 2008). 

It can be seen in Figure 3 that all the model simulations show a largely similar pattern of precipitation 
persistence, but regional differences between models exist. The result from the combined simulation is within 
the range of the three individually coupled simulations. The average of the three individual simulations shows 
a precipitation persistence larger than any of the individual simulations because the averaging tend to suppress 
the short time scale precipitation variations that are inconsistent among the models. Although the memories of 
surface LH and SH are much lower in Noah (not shown), it does not show an overall lower precipitation 
persistence than the other two models in the individually coupled simulations. This suggests that the land 
surface heat fluxes do not play a dominant role in the global pattern of precipitation variability, but regional 
impacts may still exist. Compared to the observation, all the simulations here have overestimated the 
precipitation persistence in many areas. 

4. Land-atmosphere coupling strength and its relationship to precipitation variability 
Figure 4 shows the GLACE Ω values of total precipitation for ensembles W and S and their difference 

Ω(S)-Ω(W) (see definitions in Appendix). No matter which LSS the AGCM is coupled with, Ω show similar 
patterns, with largest values in the tropical rain belt, where the SST forcing has strongest influence. The 
patterns of W and S are very close, with large differences (Ω(S)-Ω(W)) mainly over the regions with high Ω 
values. This indicates that the land-atmosphere coupling strength is strongly influenced by external forcing. 
Globally, the COLA-SSiB has the strongest land-atmosphere coupling strength, while the coupling strength 



 

 

  

 

   
   

 

 

 
  

 

  

 
 
 

    
 

 

    
 

   
  

    
 

 
    

 
 

Fig. 4 The GLACE parameter Ω for precipitation from ensembles W (left column) and S (middle column), and 
their difference (right column). Top row: COLA-SSiB. Middle row: COLA-CLM. Bottom row: COLA-Noah. 
The global mean value of each panel is shown at the left corner.  
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for COLA-Noah is the weakest. The difference should be mainly from the different land models because they 
are coupled to the same AGCM. 

It is shown in Wei et al. (2009b) that most of the precipitation predictability (Ω) and land-atmosphere 
coupling strength (Ω(S)-Ω(W)) are associated with the intraseasonal component of precipitation in the models, 
although they only account for a small percentage (~20%) of the total variance. The GLACE coupling 
strength can be conceptually decomposed into the impact of the slow varying external forcing (F) and the 
local impact of soil moisture. The external F and local soil moisture combine to determine the pattern of the 
coupling strength. From the output of the GLACE models, we find that most models have overestimated the 
low-frequency variance percentage and underestimated the high-frequency variance percentage of 
precipitation. It suggests that the specific mode of land-atmosphere coupling described in GLACE may be 
over-represented in the models. Based on the findings in this study, we adjust the land-atmosphere coupling 
strength estimated by GLACE. It is found that the adjusted coupling strengths are generally weaker than that 
from GLACE but the patterns are nearly the same. 

Appendix: Global Land-Atmosphere Coupling Experiment (GLACE) 

GLACE (Koster et al. 2004, 2006) is a model intercomparison study focusing on evaluation of the role of 
land state in numerical weather and climate prediction. It consists of three sets of 16-members ensembles of 
AGCM experiment: W, R and S. We only discuss W and S two sets here.  Ensemble W is an ensemble of free 
runs with different initial land and atmosphere conditions but forced by the same SST of 1994; ensemble S is 
the same as ensemble W except that, at each time step, the subsurface soil moisture in the land model is 
replace by that from one member chosen from ensemble W. All runs cover the period of 1 June 1-31 August, 
1994. A diagnostic variable Ω is defined: 

16σ 2 −σ 2 
< X > XΩ = 215σ X 

where σ2
x is the intraensemble variance of variable x, and σ2<x> is the corresponding variance of ensemble 

mean time series. In calculating the variance, the first 8 days of data of each run is discarded to avoid model 
initial shock, and the remaining 84 days are aggregated into 14 six-day totals. Therefore,  σ2

x is a variance of 
224 (16x14) six-day totals from all the ensemble members, and  σ2<x>is a variance of 14 six-day totals from 
the ensemble mean time series. 
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Theoretically, if the 16 members of an ensemble have the same time series of x, σ2<x>will be equal 
to σ2

x and Ω will be 1; if the x time series of the 16 members are completely independent, σ2<x> will be 
equal to σ2

x/16 and Ω will be 0. Without sampling error, Ω will be between 0 and 1. Ω measures the similarity 
(or predictability) of the time series in 16 ensemble members, and is equivalent to the percentage of variance 
caused by the slowly varying oceanic, radiative, and land surface processes. The difference of Ω from the two 
ensembles, Ω(S)-Ω(W), is equivalent to the percentage of variance caused by the prescribed subsurface soil 
moisture, and is a measure of land-atmosphere coupling strength in GLACE. 
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 Mdl 4        anomaly Obs           anomaly year SEC Random Years 

25.5    .9    26.8     -.4  1981     -2.62  ( 1985 1989)
25.9     1.3    28.1      .9 1982   -2.62 ( 2000 1989) 
23.8     -.9    27.1     -.1   1983   -2.46 ( 1990 1998)
23.5    -1.3    26.7     -.5   1984   -2.44 ( 1993 1981)
24.1     -.8    26.7     -.5   1985   -2.32 ( 1992 1995)
26.0     1.4    27.4      .2 1986   -2.56 ( 1999 1987)
26.6     2.0    28.8     1.6  1987   -2.63 ( 1996 1989)
23.6    -1.1    25.6    -1.6  1988   -2.50 ( 1989 1995)
26.2     1.5    26.7     -.5   1989   -2.48 ( 1983 1992)
25.8     1.1    27.3      .1 1990   -2.54 ( 1985 2000)
23.5    -1.2    27.9     .7  1991   -2.42 ( 1990 2001)
24.4     -.3    27.5      .4 1992   -2.49 ( 1996 2001)
24.4     -.5    27.6      .4 1993   -2.32 ( 1985 1995)
23.5    -1.3    27.3     .1  1994   -2.38 ( 1989 1991)
22.9    -1.8    27.0     -.2   1995   -2.48 ( 1986 1996)
25.6      .9    27.1     -.1   1996   -2.45 ( 1991 1990)
25.8     1.0    28.9     1.7  1997   -2.36 ( 1991 1990)
23.4    -1.4    25.9    -1.2  1998   -2.37 ( 1991 1988)
24.5     -.3    26.3     -.8   1999   -2.42 ( 2001 1995)
25.0      .2    26.7     -.5   2000   -2.41 ( 2001 1991)
25.2      .5    27.3      .1 2001   -2.50 ( 1998 1999)

24.7      .0    27.2      .0 all    -2.45 

______________ 

US National Oceanic and Atmospheric Administration 
Climate Test Bed Joint Seminar Series 
NCEP, Camp Springs, Maryland, 11 May 2009   

Methods of Multi-Model Consolidation, with Emphasis on the 
Recommended Three-Year-Out Cross Validation Approach  

Huug van den Dool 
Climate Prediction Center, NOAA/NWS/NCEP 

Camp Springs, MD 20746 
1. Introduction 

In many contexts with limited data and no patience to wait for new and independent data, one needs to 
design schemes that mimic the real time forecast situation on a fixed old data set. This is done often nowadays 
by cross-validation (CV). The purpose of CV is to establish properties of a forecast scheme that would apply 
on independent future data, for instance to estimate a-priori skill. However, while CV is often a necessity, it 
may also itself be the source of a problem in evaluating skill. CV is not an exactly defined procedure in 
general, so let’s focus on a situation when systematic error correction is thought to be required. Given N pairs 
of forecast and verification, say seasonal Nino34 forecasts for 1981-2001, we can set M pairs (M much less 
than N=21) aside, calculate the systematic error over the N-M cases, then apply the correction to all or some 
of the M cases left out. This is done exhaustively, so all data is used as (assumed independent) verification at 
least once. Naturally, researchers want to get away with M=0 or M=1, since it is simpler than M>1, and skill 
may appear higher that way. Don’t we want high skill??? Yes, but not if the assessment misleads us as to the 
performance in real time. 
Dependent data generally 
overstate the skill level. In this 
write-up we want to make a strong 
case for M=3, i.e. keep (at least) 
three forecast/observed pairs out. 
This appears to be the right 
approach in the context of multi-
model ensembles, where not only 
systematic error correction is 
required but also the determination 
of weights to be assigned to the 
participating models.    

The procedure we recommend, 
used in Pena and Van den Dool 
(2008), is more completely named 
CV3RE, where CV is cross-
validation, 3 means three years left 
out, R refers to the random choice 
of two of the three years left out, 
and E refers to an external 
climatology (ideally from a data Table 1  Shown in column 1 are June temperatures for 1981-2001 (top  

to bottom) in the Nino34 area as predicted at a lead of 5 months by 
one of the Demeter models (model#4) which has its initial states in  
January. The observed SST is shown in column 3. The anomalies in 
columns 2 and 4 are wrt to  the 21 year mean of model and observed 
data respectively. The bottom line shows 21 year averages. Column  
6 shows the systematic error correction (SEC) that would be applied  
to the year in column 5. Columns 7&8  are two randomly selected  
years also withheld in calculating the recommended CV3RE SEC. 

set for a constant climate outside 
the period of experimentation.) 
The reason that 3 years should be 
taken out for the systematic error 
correction (SEC) is that one can 
show analytically that the 
correlation does not change upon 

Correspondence to: Huug van den Dool, Climate Prediction Center, NOAA/NWS/NCEP, Camp Springs, MD, 20746; 
E-mail:  Huug.Vandendool@noaa.gov 



 

 

 

 

 

 

 

 

 
 

 
  

  
 

        
 
 

 

 
 

 

 

 

 
 
 

   
 

 
 

Fig. 1  Anomaly pattern correlation of systematic error 
corrected monthly SST over the tropical Pacific domain, 
averaged for all leads and initial months based on the 21 yr 
of data in the hindcasts (empty bars) and after 3 yr random 
cross validation (dark bars). The consolidation is done 
gridpoint-wise, which can be improved upon by increasing 
effective sample size. On the left the seven Demeter 
model, the CFS and CA. On the right seven entries for
various MME approaches.  See Pena and van den Dool 
(2008).
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taking out just 1 year, i.e. CV1 does not 
do anything. The number of elements 
withheld being odd (as a convenience), 
three would thus be the minimum. 
Typically that would be three successive 
years as a block, but here we argue that 
the three removed should be a) the test 
year, and b) two additional randomly 
chosen years. 

2. An example of systematic error 
correction 

Table 1 provides details of an 
example. Shown in column 1 are June 
temperatures for 1981-2001 (top to 
bottom) in the Nino34 area as predicted at 
a lead of 5 months by one of the Demeter 
models (“Model #4”) which has its initial 
states in January. The observed SST is 
shown in column 3. The anomalies in 
columns 2 and 4 are wrt to the 21 year 
mean of model and observed data 
respectively. The bottom line shows 21 
year averages. Column 6 shows SEC that 
would be applied to the year in column 5. 
Columns 7&8 are two randomly selected years also withheld in calculating the recommended SEC. 

Clearly model 4 needs systematic error correction badly, since it is about 2.5ºC too cold. This is a large 
error in the mean given that anomalies are rarely larger than 1.5. However, it would be wrong to assume 
that we know SEC = -2.45 with such certainty so as to apply it to all cases in the sample of 21 - this would 
be the full sample dependent data approach. If one withholds each year in turn (in the hopes of creating an 
independent year), plus two more years chosen at random, and calculates the difference in the mean of 
forecast and observation over 18 cases, one finds SEC to vary somewhat but not greatly, from -2.32 to 
-2.63 to be specific. Fortunately, the forecast still improves greatly as a result of applying a variable SEC, 
but not as much as, seemingly, when applying a constant SEC = -2.45. It is more correct to say that the 
dependent data case (N=21) over-estimates skill, and we have a professional duty to calculate an estimate 
that will hold up in true real-time. As shown in Fig.1 the skill, as measured by correlation, is around three 
points lower than in the dependent data result for each of the 9 models on the left in Fig.1 considered by 
Pena and Van den Dool (2008). 

That the year for which forecast accuracy is tested should not be included in the SEC determination is 
easily seen in the extreme for N=1 – that would make the forecast perfect in a misguided way. But even for 
N=21 the test case has a noticeable impact, because of “compensation” effects that are known to affect CV. 
For instance, in 1987, see Table 1, the forecast and observation are ‘only’ -2.2ºC apart and including this 
case keeps the SEC at -2.45, whereas excluding it makes it -2.63. The opposite happens in 1985 and 1993, 
two years that feature forecast errors larger than average. Using three elements dilutes the compensation 
effect. In section 3 we will see a more complicated compensation effect. 

In the next section we argue again that three should be taken out, but for a very different reason. 

3. Degeneracy in regression 

In earlier work we found highly negative correlation in CV applied to forecasts based on regression 
schemes, where a zero correlation would have been more reasonable. This feature was ultimately explained in 
Barnston and van den Dool (1993). Fig. 2, reproduced from that paper shows a synthetic data case. We 
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Fig. 2  The correlation (Y axis) calculated as  
per CV-1 from synthetic data  generated  
by computer  with a known correlation (X 
– axis). For instance when generating 
paired  data with 0.3 correlation the CV-1  
procedure  (applied to 32 pairs) returns an  
estimate for the correlation around 0.1. 

 

 

 

 

 

 
 
 
 

 

 

 
  

 
 

 

  

  

 

 

 

generated pairs of correlated forecast, observation data, 
varying the correlation along the x-axis from 0 to 1. We 
then did a CV-1 approach to calculate the correlation from 
limited data (32 pairs). When the correlation is large CV-1 
functions OK and only shows some normal ‘shrinkage’. But 
when the intended correlation is small, between 0 and 0.2 in 
this case, the outcome of CV-1 is a disaster. One can get a 
perfect -1 correlation. This happens because of 
compensation effects at the covariance level (in section 2 
we had compensation in the mean). Suppose we have zero 
correlation on the full sample between forecast and 
observation, and thus also zero covariance. When we leave 
out 1 pair, which happens to co-vary by chance positively, 
the remaining N-1 pairs have, by necessity, a negative 
covariance in the mean. Thus a regression forecast based on 
the N-1 will be opposite to what is observed in the one case 
left out, thus leading to high negative correlation.  

This can happen in real life regression forecasts. For 
instance Nino34 correlates with seasonal temperature over 
the US, but with opposite sign in the NW and the SE US. 
Along the broad band of zero and small correlation, 
presumably the nodal line of a teleconnection pattern, the 
CV-1 score of a regression forecast is highly negative. Here 
we get punished for our good intentions. The solution, aside 
from waiting forever for more years, is to take out more 
than 1. For instance when taking out the test year as well as 
two more years, the compensation effect is obviously 
diluted. Choosing two more years at random (as opposed to 
a block of three, with the test year in the middle) is better because the serial correlation (caused by climate 
change among other things) violates the assumption of independence. 

This above discussion applies to the multi-model ensemble approach because the MME is a linear 
combination of several forecasts, with weights derived from a limited data set as per regression. We should 
apply CV3RE, and we can fold the CV for SEC into the CV required for the weights (the regression aspect) 
into one single procedure. The seven entries on the right hand of Fig.1 are MME by different schemes 
subjected to CV3RE. The various ridge regression approaches fare much better under CV than an 
unconstrained regression (UR). 

4. Conclusion 

We recommend as cross-validation procedure something called CV3RE, where CV is cross-validation, 3 
means three years left out, R refers to the random choice of two of the three years left out, and E refers to an 
external climatology (ideally from a data set for a constant climate outside the period of experimentation.). 
We have not laid out the case for the external climatology in this short write-up, but this aspect also helps 
stabilize the answers one gets. While we believe CV3RE is appropriate for the multi-model ensemble it may 
also be a good strategy in many other situations. However, each problem requires some deliberations of its 
own, and a general theory/algorithm for CV appears elusive (to me). 
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1. Introduction 

Calculation of model physics in a GCM (General Circulation Model) usually takes a very significant part 
of the total model computations. Evidently, this percentage is model dependent but full model radiation is the 
most time-consuming component of GCMs (e.g., Morcrette et al. 2008, Manners et al. 2008). In both climate 
modeling and NWP, the calculation of radiative transfer is necessarily a trade-off between accuracy and 
computational efficiency. Very accurate methods exist, such as line-by-line procedures that could be 
employed ideally to calculate radiative fluxes for every grid-point at every time-step. However, if the 
radiation transfer were to be computed for every grid point and at all time steps, it would generally require as 
much CPU time or more than the rest of the model components, i.e., model dynamics and other physical 
parameterizations (Morcrette et al. 2008). Therefore a number of simplifications are usually made to reduce 
this cost to manageable levels. 

For example, in the majority of modern radiative schemes, the correlated-k method (Lacis and Oinas 
1991) is typically used to reduce the integration over wavelength by effectively binning wavelengths with 
similar absorption coefficients (k-terms). This simplification reduces greatly the number of monochromatic 
radiative transfer calculations required. The number of k-terms can be adjusted, which provides a trade-off 
between the accuracy and efficiency required for a given application. However, the correlated-k methods 
cannot be made sufficiently computationally efficient to allow calculations for every grid-point at every 
time-step. 

To reduce the cost further, calculations are usually made at lower temporal and/or spatial resolutions. 
Quite drastic reductions in temporal resolution are often made (e.g., radiation calculations are made every 
three hours for the climate and global forecast models at NCEP and UKMO (Manners et al. 2008)). Between 
radiative transfer calculations major changes may occur in the radiative profiles (caused primarily by two 
factors: changes in clouds and changes in the angle of incident solar radiation) that are not represented. A 
reduced horizontal resolution approach (the radiative calculations are performed on a coarser grid with a 
following interpolation of the results to an original finer grid) is used to speed up radiation calculations at 
ECMWF (Morcrette et al. 2007, 2008). A reduced vertical resolution approach (the full radiation is 
calculated at every other vertical level and interpolated on the intermediate levels) is used in the Canadian 
operational Global Environmental Multiscale model (e.g. Côté et al. 1998). Such approaches reduce 
horizontal or vertical variability of radiation fields. Thus, these approaches may reduce the accuracy of a 
model’s radiation calculation and its spatial or/and temporal consistency with other parts of model physics 
and with model dynamics, which may, in turn, affect negatively the accuracy of climate simulations and 
weather predictions. 

Such a situation is an important motivation for developing new alternative numerical algorithms that 
provide faster calculations of model physics while carefully preserving their accuracy. In our previous 
studies (Krasnopolsky et al. 2005, 2008) we demonstrated that the neural network (NN) emulation approach 
can be successfully used to speed up significantly (by one to two orders of magnitude) the calculations of 
model radiation while providing a sufficient accuracy of decadal (50 years) climate simulations. We also 
demonstrated that this approach is a generic one; namely it can be used not only for emulating any 
formulation of the long wave radiation (LWR) physics but also for emulating any formulation of short wave 
radiation (SWR) physics. 

Correspondence to: V. M. Krasnopolsky, Environmental Modeling Center, NOAA/NWS/NCEP;
 E-mail:  Vladimir.Krasnopolsky@noaa.gov 
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It this study we applied the NN emulation approach to the higher complexity NCEP CFS (Climate 
Forecasting System), which required further development of the neural network emulation methodology. We 
demonstrate that the NN emulation approach for model radiation can be successfully applied to the 
significantly higher resolution coupled ocean-atmosphere-land-ice model with time dependent CO2. The 
atmospheric part of CFS has spectral T126 horizontal resolution and 64 vertical levels (T126L64); it is 
coupled with the 40-level interactive MOM4 ocean model, with a state-of-the-art 3D land model, and with an 
ice model. 

In Section 2, the improved NN emulation approach and developed NN emulations for the NCEP CFS 
long-wave radiation (LWR) and short-wave radiation (SWR) are briefly described in terms of their design, 
accuracy, and computational performance. In Section 3, the results of the parallel decadal model simulations, 
one using both LWR and SWR NN emulations for calculation of full model radiation and the other using the 
original model radiation (the control run) are compared in terms of similarity of their spatial and temporal 
variability characteristics. Section 4 contains conclusions.  

2. NN emulations for the NCEP CFS radiation 

2.1 Background information on the NN emulation approach   

NN emulations of model physics are based on the two following facts. First, any parameterization of 
model physics is a continuous or almost continuous mapping (input vector vs. output vector dependence) and 
can be symbolically written as: 

Y = M (X ); X ∈ℜn , Y ∈ℜm
 (1) 

where M denotes the mapping, n is the dimensionality of the input space, and m is the dimensionality of the 
output space. And second, NNs (multilayer perceptrons) are generic tools for approximation of such 
mappings (Funahashi 1989).   

NN is an analytical approximation that uses a family of functions like: 
k n 

yq = aq0 +∑aqj  ⋅φ (bj0 +∑bji  ⋅ xi );  q = 1,  2,K, m   (2) 
j=1 i=1 

where xi and  yq are components of the input and output vectors X and Y, respectively, a and b are fitting 
n 

parameters, and φ(bj0 +∑bji ⋅ xi ) is a “neuron”. The activation function Φ is usually a hyperbolic tangent, 
i=1 

n and m are the numbers of inputs and outputs (the same n and m as in Eq. (1)), respectively, and k is the 
number of neurons in the hidden layer.  Definitions of NN terminology can be found in many places, for 
example in the recent book by Bishop (2006) and in the review paper by Krasnopolsky (2007); however, eq. 
(2) is sufficient to understand the subject of this paper.  The numerical complexity of NN (2) can be well 
approximated by a number of NN weights (Krasnopolsky 2007): 

NC = k · (n + m + 1) + m (3) 
The NN numerical complexity NC determines the time, TNN, required for the estimating NN (2), 

TNN = c · NC 

TNN, is directly proportional to NC with the coefficient of proportionality c depending mainly on a hardware 
and software environment of the computer used. 

2.2 NN emulations for full model radiation 

The LWR and SWR parameterizations together comprise the full model radiation. The LWR and SWR 
parameterizations or the full model radiation for the NCEP CFS have been emulated using two NNs, one for 
LWR and another for SWR.  

The input and output vectors for NNs, emulating the LWR or SWR parameterizations, include the same 
parameters as those of the input and output vectors for the original LWR or SWR parameterizations, 
respectively. For the LWR NN emulation, these input parameters are the following nine profiles: 
atmospheric pressure, temperature, specific humidity, ozone mixing ratio, total cloud fraction, cloud liquid 
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water path, mean effective radius for liquid cloud, cloud ice water path, and mean effective radius for ice 
cloud. The LWR parameterization (and LWR NN emulation) output vectors consist of the profile of heating 
rates (HRs) and five radiation fluxes: the total sky outgoing LW radiation flux from the top layer of the 
model atmosphere (the outgoing LWR or OLR), the clear sky upward flux at the top of the model 
atmosphere, the total sky upward flux at the surface, the total sky downward flux at the surface, and the clear 
sky downward flux at the surface.  

The NN emulation of the LWR parameterization includes all non-constant inputs of the original LWR 
(total 556 inputs; n = 556 in Eq. (1)). It has the same outputs (total 69 outputs; m = 69 in Eq. (1)) as the 
original LWR parameterization. We have developed several NNs, all of which have the same aforementioned 
inputs and outputs, with the number k changing from 50 to 200 in Eq. (2). Varying k, the number of terms (or 
neurons) in Eq. (2), allows us to demonstrate the dependence of the accuracy of approximation on this 
parameter as well as its convergence, and as a result, to provide a sufficient accuracy of approximation for 
the model (e.g. Krasnopolsky et al. 2005). 

The input vectors for the SWR parameterization include 55 vertical profiles: atmospheric pressure, 
temperature, specific humidity, ozone, CO2, N2O, O2, and CH4 volume mixing ratios, total cloud fraction, 
cloud liquid water path, mean effective radius for liquid cloud, cloud ice water path, mean effective radius 
for ice cloud, and three profiles (optical depth, single scattering albedo, and asymmetry parameter) for each 
of 14 different species of aerosols. The input vectors include also the solar zenith angle, the solar constant 
and the surface albedo for four different bands. The SWR parameterization output vectors consist of a 
vertical profile of heating rates (HRs) and nine radiation fluxes: three fluxes at the top layer of the model 
atmosphere (the total sky outgoing SW radiation flux, the total sky downward flux, the clear sky upward 
flux), four radiation fluxes at the surface (the total sky upward and downward fluxes and the clear sky 
upward and downward fluxes), and the downward (the total and clear sky) fluxes in the UV-B spectral band.  

The NN emulations of the SWR parameterization have 562 inputs and 73 outputs. We have developed 
several NNs, with the number k changing from 50 to 200 in Eq. (2). It is noteworthy that, as in the case of the 
NN emulation of LWR, the number of NN inputs is less than the number of input profiles multiplied by the 
number of vertical layers plus the number of relevant single level characteristics. Many input variables (e.g., 
almost all gases) have zero or constant values for the upper vertical layers, and for some gases the entire 
volume mixing ratio profile is a constant (obtained from climatological data).  

2.3 Generating data sets for NN training and validation 

The NCEP CFS (T126L64) has been run for seventeen years to generate representative data sets. The 
representative data set samples adequately the atmospheric state variability, i.e., it represents all possible 
states produced by the model as fully as possible (including the states introduced due to time dependent CO2 
concentration). All inputs and outputs of original LWR and SWR parameterizations have been saved for two 
days per month, i.e., for one day at the beginning and one day in the middle of the month, every three hours 
(eight times per day) to cover the annual and diurnal cycles. From each three hour global data set three 
hundred events (the set of input and output profiles) have been selected. The data set was divided into three 
independent parts, each containing input/output vector combinations. Each part consists of about 200,000 
input/output records. The first part has been used for training and the second one for tests (control of 
overfitting, control of NN architecture, etc.). The third part of the data set was used to create a validation data 
set independent of both the training and test data sets. The third part or the validation set was used for 
validation only. All approximation statistics presented in this section are calculated using this independent 
validation data set. The accuracy of the NN emulation, i.e., biases and rmse, are calculated against the control 
(the original parameterization). 

It is noteworthy that along with the aforementioned requirement of representing all possible states 
produced by the model, the size of the training data set is limited mainly by the training time, which, in turn, 
is determined by the processor type and the amount of memory available. The training time is approximately 
proportional to the size of the training data set. In our case, the selection of about 200,000 input/output 
records for training is a result of an optimal choice providing a sufficient representativeness of the training 
set and a reasonable training time. We selected the size of the test set equal to the size of the training set 
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because the training and test sets are supposed to have close statistical properties. There are no serious 
limitations to the size of the validation set; we selected it equal to the size of the first two sets. 
2.4 Bulk approximation error statistics 

To ensure a high quality of representation of the LWR and SWR processes, the accuracy of their NN 
emulations has been carefully investigated. The NN emulations have been validated against the original 
NCEP CFS LWR and SWR parameterizations. To calculate the error statistics presented in Table 1; the 
original parameterizations and their NN emulations have been applied to the validation data set. Two sets of 
the corresponding HR profiles have been generated for both LWR and SWR. Total and level bias (or a mean 
error), total and level RMSE, profile RMSE or PRMSE, and σPRMSE have been calculated (see Krasnopolsky 
2007). 

Statistics Types Statistics 
LWR SWR 

NCAR CAM NCEP CFS NCAR 
CAM 

NCEP CFS 
RRTMGRRTMG RRTMF 

Total Error 
Statistics 

Bias 3. · 10-4 2. · 10-3 7. · 10-4 -4. · 10-3 5. · 10-3 

RMSE 0.34 0.49 0.42 0.19 0.20 
PRMSE 0.28 0.39 0.30 0.15 0.16 
σPRMSE 0.2 0.31 0.30 0.12 0.12 

Bottom Layer 
Error Statistics 

Bias -2. 10-3 -1. · 10-2 6. · 10-3 -5. · 10-3 9. · 10-3 

RMSE 0.86 0.64 0.67 0.43 0.22 

Top Layer 
Error Statistics 

Bias -1. · 10-3 -9. · 10-3 2. · 10-3 2. · 10-3 1. · 10-2 

RMSE 0.06 0.18 0.09 0.17 0.21 

NN Complexity NC See eq. (3) 12,733 33,294 93,969 11,418 45,173 
Speedup, η Times 150 12 21 20 45 

Table 1  Statistics estimating the accuracy of HRs (in K/day) calculations and the computational 
performance for NCEP CFS (T126L64) LWR and SWR using NN emulation vs. the original 
parameterization.  For comparison, NCAR CAM (T42L26) LWR and SWR statistics are also shown. 
Total statistics show the bias, RMSE, PRMSE, and σPRMSE for the entire 3-D HR fields.  Layer (for the 
top and bottom layers) statistics show the bias and RMSE for one horizontal layer (the top or bottom 
layer).  Also, the NN complexity NC (3) and speedup η (how many times NN emulation is faster than the 
original parameterization) are shown.  RRTMG and RRTMF are different versions of the radiation code 
developed by AER Inc. 

Using NN emulations simultaneously for LWR and SWR or for the full model radiation results in an 
overall significant, about 20 – 25% speedup of NCEP CFS climate simulations when both LWR and SWR 
are calculated every hour. The speedup η provided by NN emulations (see Table 1) can be also used for more 
frequent calculations of model radiations. For example, for calculations with higher (T382) model horizontal 
resolution, if full NN radiation is calculated 10 times more frequently, i.e., every six minutes, at every model 
dynamics time step (instead of every hour), the time required for the climate simulation using full NN 
radiation will be still less than the time needed for the climate simulation using the original radiation with the 
one hour frequency. 

3. Validation of parallel decadal model simulations and seasonal predictions 

In this section we present comparisons between two parallel 17-year NCEP CFS model runs: one using 
the original LWR and SWR (the control run) and another one using their NN emulations. Both spatial and 
temporal characteristics of prognostic and diagnostic fields are compared for the parallel runs. To better 
estimate the changes introduced by NN emulations, we compare them with “background changes” between 
two control runs performed with the original NCEP CFS model configuration, i.e., without NN emulations. 



 

 

 
 

 
 

    
  

 

 

 
  

 

 

 

 

 

 

 

 

Fig. 1  Zonal and time mean Top of Atmosphere Upward Long (left panel) and Short (right panel) Wave 
Fluxes (in W/m2) for the winter. The solid line – the difference (the full radiation NN run – the control 
(CTL)), the dash line – the background differences (the differences between two control runs) presented 
for comparison.   The fluxes’ differences are multiplied by cos (lat) to equalize the areas.  
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The first run was performed before and the second run after the routine changes (introduced quasi-regularly 
by system administrators) of the version of the FORTRAN compiler and libraries.  

The results of 17-year climate simulations performed with NN emulations for both LWR and SWR, i.e., 
for the full model radiation, have been validated against the parallel control NCEP CFS simulation using the 
original LWR and SWR. We analyze the differences between the parallel runs in terms of time and spatial 
(global) means as well as temporal characteristics.  

Let us discuss first the differences between the parallel simulations in terms of spatial and temporal 
radiation characteristics. The differences between the NN radiation and control runs and the differences 
between two control runs for zonal and time mean LWR and SWR fluxes are presented in Fig. 1. For fluxes 
presented in Fig. 1 both the differences between the NN radiation and control runs and the differences 
between two control runs are small and similar by magnitude. They do not exceed 2-3 W/m2 that is overall 
they are within observational errors and uncertainties of reanalysis (e.g. Kalnay et al. 1996).  

Let us discuss now prognostic and diagnostic characteristics such as SST, precipitation, different types of 
clouds, and time series that are sensitive to changes in the model resulted from using NN emulations. Close 
similarities have also been obtained for these results of parallel runs in terms of time mean spatial fields, 
which are presented in Figs. 2 to 4. Figs. 2 to 4 have the same design: the upper left panel shows fields 
produced in the control run (CTL) and the upper right – in the full radiation NN run. The bottom left panel 
shows the difference (bias) between the full radiation NN and CTL runs, and the bottom right panel shows 
for comparison the background differences (between two control runs) described above. 

The 17-year (1990-2006) time-mean SST distributions and bias/differences for the full radiation NN run 
vs. the control run and the background differences between two control runs are presented for summer in Fig. 
2. The SST bias is very small; it is not larger than the background differences. The results for other seasons 
are similar.  

Figure 3 shows the 17-year (1990-2006) time-mean distributions and bias/differences for total 
precipitation (PRATE) for the parallel full radiation NN and control runs for summer. The PRATE bias is 
quite limited and occurs mostly in the tropics; it is also very close by magnitude and pattern wise to the 
background differences. The results for other seasons are similar. 

Figure 4 shows comparisons for the parallel full radiation NN and control runs for total clouds, which are 
very close for the above runs. The results for other seasons and for other types of clouds are similar. 



 
 

 

 
  

  
 
 

 

Fig. 2  The 17-year  (1990-2006) time-mean SST distributions and bias/differences for summer (JJA: June-
July-August) for the full radiation NN run vs. the control run. The upper row panels: left – the control 
(CTL) run, right – full radiation NN run.  The bottom row panels: left – bias or the difference (full 
radiation NN run – CTL), right – the background differences between two control runs shown for 
comparison. The contour intervals for the SST fields are 5º K and for the SST bias and difference are 
0.3º K.  

 
    

 
 

Fig. 3 The same as in Fig. 2 but for total precipitation (PRATE).  The contour levels for the PRATE fields 
are 2, 4, 8, 16 and 32 mm/day. The contour intervals for the PRATE differences (the bottom panels) are 
1 mm/day with 0 mm/day contour skipped for clarity. 
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Fig. 4  The same as in Fig. 2 but for total clouds. The contour intervals for the cloud fields are 20% and for 
the differences 4% with 0 % contour skipped for clarity. 

84 SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 

4. Conclusions 

In this study, the NN emulation approach (Krasnopolsky et al. 2005, 2008) is implemented in the state-
of-the-art, high resolution, coupled NCEP CFS. The developed highly accurate neural network emulations of 
long-wave (RRTMG-LW and RRTMF-LW) and short-wave (RRTMG-SW) radiation parameterizations are 
12 to 45 times faster than the original/control long-wave and short-wave radiation parameterizations, 
respectively. The use of the full NN model radiation results in: (1) an overall speedup of about 20 – 25% for 
climate simulations and seasonal predictions, and (2) an opportunity to increase significantly the frequency 
of radiation calculations (for example, to calculate model radiation at every model dynamic time step) 
without increasing the total model calculation time.  
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Ocean Reanalyses: Prospects for Climate Studies 
James A. Carton 

Department of Atmospheric and Oceanic Science 
 University of Maryland, College Park, MD 

1. Introduction 

This talk reviewed progress in developing ocean reanalyses analogous to the atmospheric reanalyses, and 
spanning similar time periods. The questions to be addressed are: what climate signals can we detect? Where 
and when can we detect these signals? How large were the signals, and how large is our uncertainty? What 
level of diagnostic analysis is possible – for example is it possible to construct a full heat or freshwater 
budget? To what extent are the results contaminated by instrument and model bias (including wind bias)? 
What approaches can we use to identify and correct for these biases? And finally, what comes next? If this 
seems like a lot to cover in one talk, you are right. In fact I ended up talking mainly about the first part. If 
you are interested in learning more about these subjects in addition to looking at the slides you can get some 
up to date information and references by looking at the white papers being produced for the OceanObs'09 
conference (www.oceanobs09.net). Another up-to-date source of information is the Climate Change Science 
Program’s report (CCSP, 2008). 

In order to introduce the 
audience, whose background is 
mainly in meteorology, to the results 
of current ocean reanalyses I present 
the problem of the warming of the 
oceans. If you, the audience member, 
want to evaluate the ocean’s 
participation in global warming you 
can compute a volume average of the 
temperature of the oceans down to 
700m (the well-sampled part of the 
ocean) and multiply by the heat 
capacity of seawater you can 
evaluate the temporal change in the 
volume-average heat content of the 
oceans (Fig. 1). Time rate of change 
of this quantity gives the net heat 
flux from the atmosphere into the 
ocean (a more accurate estimate, by 
the way, than can be evaluated from 
meteorological parameters). 

Comparing the results from the 
nine reanalyses shown in Fig. 1 tells 
us that most of the reanalyses show 
similar rates of global warming, although they differ from each other by ~10-20%. Most of the reanalyses 
use sequential data assimilation. However, the one that is most different, GECCO, uses 4DVar. This 
immediately suggests the change from sequential approach to 4DVar will have a fundamental impact on the 
results. Fig. 1 is also interesting because if you look at it again you will notice that in addition to a gradual 
warming trend there is an anomalously rapid warming in the 1970s and corresponding cooling in the mid-

Fig. 1 Global average heat content anomalies from the individual 30-
yr record means (1966-1995), integrated 0/700m and temporally 
smoothed with a 1-year running filter.  Bold black curve shows the 
ensemble average of the eight no-model and sequential analyses.  The 
linear trend of the ensemble average is 0.77x108 Jm-2/10yr or 
0.24Wm-2, while trends of individual analyses range from 0.68 to 
0.98x108Jm-2 /10yr (0.21-0.31Wm-2). Global integrated heat content 
can be obtained from the global average by multiplying by the surface 
area of the World Ocean excluding shelves, 3.4x1014 m2. This figure 
comes from Carton and Santorelli (2008). 
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1980s. This ‘bump’ in heat content is suspicious and, to make a long story short, turns out to be evidence of 
the presence of instrument bias. 

2. Data and methodology 
This talk describes results of a number of different data assimilation systems. For those audience 

members who have some idea about how data assimilation works I provide a very brief introduction to the 
differences among the systems I consider (see slide 9 of my presentation at 
ftp://ftp.cpc.ncep.noaa.gov/CTB/2008-2009/Carton-ctb.pdf).  My brief introduction begins with definition of 
a cost function J containing weighted mean square differences between the analysis represented by the vector 
x (which we haven’t determined yet) and the background estimate, xb, and also the differences between the 
analysis and a set of observations xo. 

J (x) = (x - xb)T B-1 (x - xb) + (Hx - x0)T R-1 (Hx - x0) 
where B denotes the background error covariance, R the observational error covariance and H the linear 
operator. 

The data assimilation algorithms all develop 
from this expression and all attempt to minimize  
J. For most of the reanalyses considered here x is 
considered a function of three spatial dimensions. 
But for the 4DVar reanalysis (the authors prefer  
the term state estimate) x is additionally a 
function of time. 

I also discuss the historical record of ocean  
observations. While this may seem like an 
esoteric subject to meteorologists, oceanography  
is such a data-limited field that small  changes in  
our interpretation of the historical record can 
have a big impact in our understanding of ocean  
climate (an example is presented below). 

3. Analysis of prominent results 

In the introduction I mentioned the spurious 
‘bump’ in heat content of the oceans. Recent  
reexaminations of the historical record have 
traced this bump to time-dependent errors in a  
particular type of instrument called an
Expendable Bathythermograph (XBT). Different  
groups have developed corrections to the
historical XBT (and earlier MBT) data which 
eliminate the bump. But, interestingly, they have 
rather different ideas about the vertical structure 
of this bias correction (see Fig. 2).   

That means that the different bias corrections  
can have a rather different impact on our
historical reconstruction of such variables as  
temperature and currents even though they may 
give similar estimates of heat content. And in the 
results presented in the talk the audience  member  
could see the impact on data assimilation
experiments using one or another of the bias 
corrections. Surface currents for the 1997-1998 

Fig. 2 Zonally and temporally (1967-2002) averaged  
difference in observed temperature as evaluated in  
different hydrographic data sets. In the upper panel the  
data sets are a recent version of the World Ocean  
Database (Levitus et  al., 2009) which includes a new
bias correction  minus the older WOD05 which does not.   
In the lower panel the data sets are a new bias-corrected  
database by Wijffels et al (2008)  minus WOD05.   Mean 
isotherm depths are superimposed for convenience.  The  
Levitus et al. (2009)  bias correction is not a function of 
latitude, but  its impact in Fig. 2 is largest in the  
subtropics because that’s where historical  data coverage 
is most intense. 
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Fig. 3  Salinity anomaly from the 1962-1995 average, 
averaged vertically (0-250m) and in time for two 3-
year periods 1968-70 and 1971-3. The two periods 
show early and mid stages of the 1970s Great Salinity 
Anomaly. 
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El Nino are altered by  20% as a result of the 
choice of bias correction. Changes in the
subtropics are smaller, but still non-negligible.  

I also presented some discussion of model  
resolution and its impact on the ocean reanalyses. 
I argued that resolution of finer than 1/2° in the 
horizontal may well be necessary for processes  
involving horizontal advection, even though this 
resolution is much finer than the effective
resolution of  the historical observational network. 
The example I gave is the anomalous advection of 
freshwater in response to the Great Salinity 
Anomaly  of the late-1960s to early  1970s. In case 
you are not familiar with this, a reversal of winds 
in the winter of 1968-1969 apparently  dumped a 
large amount of sea ice out of the Arctic into the  
North Atlantic, thus introducing a pool of low 
salinity water. This pool gradually made its way 
anticyclonically around the subpolar gyre of the 
North Atlantic, reappearing off Norway about  
eight years later. 

Of the nine reanalyses discussed earlier only  
five actually show this event in surface salinity  
(shown in Fig. 3). Of these, only one, SODA  
(Carton and Giese, 2008), actually  shows the 
freshwater making its way around the western  
side of the sub-polar basin, hugging the coast as 
we think it should. Only this analysis has
sufficient horizontal resolution (1/4°) to resolve  
boundary processes. The rest are too coarse
(typically 1°) and as a result, too diffusive. 

4. Concluding remarks 

This talk has been somewhat different than 

 

 

 

 

some of the others in this lecture series in that I do not specifically address issues related to the NOAA or 
NASA software suites associated with the Climate Testbed. Rather, my goal is to encourage the  
meteorologists to take an interest in historical reanalyses of ocean variables. I return at the end to some of the  
questions posed at the beginning of the talk. The most important issues for potential users of the ocean 
reanalyses -- what climate signals are in the historical record and how much can we trust the record – I 
address mainly  by example, by comparison of the results among different reanalyses, and by  comparison of  
the oceanic signals to their meteorological counterparts. I hope to have convinced audience members that  
there are indeed interesting, ‘real’ climate signals in current ocean reanalyses. For some coupled problems  
such as surface heat flux estimates based on the ocean reanalyses are likely more accurate than their widely  
discussed meteorological counterparts. 

On the other hand I also expressed caution. I think it is premature to do sophisticated analyses of  
quantities such as relative vorticity which are sensitive to error. And we are still at the stage where the user 
must be on the lookout for spurious results. Finally, I discussed the potential of developments in data 
assimilation methodology, including ensemble methods. I discussed the prospects for extending the record  
back into the first half of the 20th century. And I discussed new applications such as reanalysis of ocean 
ecosystems based on an understanding of the changing physical properties of the oceans.  
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Camp Springs, MD 20746 
1. Introduction 

Soil moisture, the so-called land SST, has been considered important for weather and climate prediction, 
in particular in the warm season when land and atmosphere are more tightly coupled (Dirmeyer 2000, 
Kanamitsu et al. 2003, Koster et al 2003, Van den Dool et al. 2003, Zhang et al 2003, Van den Dool 2007). 
Soil moisture is also an important indicator for real-time drought and flood monitoring. In 1997 the NOAA 
Climate Prediction Center (CPC) started a soil moisture “dynamical” week1 and week2 outlook, over the 
United States only, on a daily basis, using CPC’s leaky bucket (LB) land surface hydrological model (Huang 
et al. 1996, Van den Dool et al. 2003) forced with week1 and week2 precipitation and surface air temperature 
from a single member forecast of the NOAA National Center for Environmental Prediction (NCEP) Medium-
Range Forecast (MRF), lately called the Global Forecast System (GFS). From late 2001 onward the GFS 
ensemble forecast was used to replace the single member forecast and the procedure was further improved in 
late 2003 to include the bias corrected GFS ensemble forecast.   

The reader should 
understand that the LB 
model is kept up to date 
every day with observations. 
One can look upon this as 
an integration of the LB 
from 1931 to yesterday 12Z, 
and the GFS’s temperature 
and precipitation are 
appended to this ongoing 
LB integration to jump 
another two weeks ahead. 
We do not use the GFS’s 
soil moisture directly. We 
therefore avoid having to 
deal with the potentially 
very biased soil moisture 
states of the GFS and note 
the LB is integrated in an 
offline fashion, i.e. not 
coupled to the atmosphere. More primitive approaches to avoid the GFS bias include considering the 2 week 
change in the GFS’s soil moisture predicted by GFS itself, a product launched by COLA around 1995. 

When we talk about research below we mean research ‘on the fly’ applied to products that were generated 
in real time, i.e. only a few years worth of data has been saved and nothing was rerun. 

In mid-2007, the CPC initiated its monitoring and prediction of the variability of the Global (African, 
Asian, Australian, and American) Monsoons Systems, to collaborate with the international community on 
improving monsoon monitoring and providing timely and useful weather and climate information for 
different users and decision makers worldwide. With releasing the CPC gauge based Global Unified Land 

North America 

Fig. 1  Time series of daily spatial correlation of week-1 & week-2 observed & 
forecasted precipitation  anomalies over North America, bias correction 
based on 30 days mean forecast errors on 0.5x0.5 grid. Note: the data from 
May to November 2007 was missing. 
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Surface Precipitation Analysis in 
late 2007, the daily bias corrected 
GFS ensemble week1 and week2 
precipitation forecasts have been 
expanded to the global land 
surface. 

The NCEP GFS is not a 
frozen system but has been 
upgraded frequently in terms of 
dynamical core and physics 
package in the past years. In the 
early stage of CPC’s soil moisture 
“dynamical” outlook, both bad 
and good comments were received. 
In recent years, more and more 
good comments were gathered 
from different users. So it is time 
to verify and quantify the daily 
bias corrected GFS ensemble 
week1 and week2 precipitation 
and soil moisture forecast thereof. 
The first part of this work is to 
assess the GFS ensemble week 1 
and week 2 precipitation forecasts 
over the global land. The main 
attention is on the skill of the bias 
corrected GFS ensemble 
precipitation forecasts over the 
North American, South American, Asia-Australian and African monsoon regions. Detailed analysis is 
conducted on the spatial-temporal distribution of the bias, in order to address questions like: what does the 
bias look like and is it removable? Does bias correction improve GFS forecast skill? The second part of this 
research focuses on the predictability of the land surface, but over the US only. Since the predictability of soil 
moisture critically depends on the quality of the GFS ensemble predicted precipitation, further analysis is 
done on the temporal-spatial features of the GFS driven soil moisture forecast skills, i.e. when, where and to 
what extent the soil moisture can be predicted on week1 and week2 time scales beyond the skill of a 
persistence forecast. 

2. Methodology 

Every day the week-1 and week-2 GFS precipitation ensemble forecasts have been corrected with the past 
N days mean forecast errors, defined as follows: 

Bias1 = 1/N Σ [ Pf (week1) – Po (week1) ]       (1) 

Bias2 = 1/N Σ [ Pf (week2) – Po (week2) ]       (2) 
where Pf is the NCEP GFS ensemble week-1 and week-2 precipitation forecasts, Po is the observed week-1 
and week-2 precipitation from CPC daily US and Global Unified Precipitation Analysis. N is number of days 
(e.g. 30 or 7 days, these being the only choices being maintained in real time). The choice of N is a little bit 
subjective. In general, the mean forecast errors calculated from larger N (e.g. 30 days) are more robust then 
those from the smaller N (e.g. 7 days or 1 day). Of cause, one can calculate the mean forecast errors for the 
bias correction with more complicated methods, such as non-equal weighting (giving larger weights to more 
recent days and reducing weights with the time of past days increasing) or use probability density function 
(PDF) adjustment based on the forecasted and observed precipitation in the past days. 

Table 1  Averaged (May 1, 2008 – June 7, 2009) spatial correlations of 
observed and GFS forecasted precipitation anomalies over different 
monsoon regions. 

Table 2  Averaged (May 1, 2008 – June 7, 2009) RMSE of GSF 
forecasted precipitation anomalies over different monsoon regions 
(unit: mm/week). 



 

 

 
 

 
 

92 SCIENCE AND TECHNOLOGY INFUSION CLIMATE BULLETIN 

The very same bias correction is also applied every day to the week-1 and week-2 GFS ensemble 2 meter 
surface air temperature (T2m) forecasts, but over the US only. Results for T2m are not shown in this 
paper. 

 
  

 
Fig. 2 Time series of 5-day running mean spatial correlation & RMSE of week-1 & week-2 observed & 

forecasted precipitation anomalies over North America (NA), South America (SA), Asia-Australia 
(AS) & Africa (AF), bias correction based on 30 days mean forecast errors. 

  
  

Week -1 mean Week -2 mean 
Fig. 3  Annual mean of week-1 (left) & week-2 (right) forecasted precipitation errors over North America, 

South America, Asia-Australia & Africa (unit: mm/week). 

3. Performance of NCEP GFS week-1 and week-2 ensemble precipitation forecasts 

Since the above bias corrections (with both 30 days and 7 days mean forecast errors) are performed every 
day, the data sets are archived on a daily basis for verification and research. Figure 1 shows the time evolution 
of daily spatial correlation of the week-1 and week-2 observed precipitation anomalies and GFS forecasted 



  
 

 

 

 

 

  

 

summer 

winter 

Fig. 4  First 4 EOF patterns and their PCs of week-1 (left two columns) & week-2 
(right two columns) ensemble forecasted precipitation errors over North 
America, South America, bias correction based on 30 days mean forecast 
errors. 
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precipitation anomalies
over North America,
corrected with 30 days
mean forecast errors. The
dominant features are a
large day to  day fluctuation  
and a clearly  seasonal cycle 
in the GFS precipitation
forecast skill, with the
relative higher skill in the
cold season and lower skill 
in warm season. In  general, 
the annual mean of spatial
correlation skill for the
week-1 GFS precipitation
forecasts is around 0.49
and 0.24 for the week-2
GFS precipitation forecasts.

Similar features for the 
bias corrected GFS
ensemble precipitation
forecasts are found in  other 
regions, such as in South
America, Asia-Australia
and Africa monsoon
regions, but with somewhat 
different forecast skills for
week-1 and week-2 time
scales (See  Table 1 and
Table 2 for more details). 

Because the resolution
of the GFS forecasts used
here is on a 2.5x2.5 degree 
grid and the observed CPC 
daily Unified Global
Precipitation Analysis is on 
a 0.5x0.5 degree grid, one
can do the verification on
either grid. A test has been  
conducted on both grids
and the results show that
the skill assessment does
not depend  much on the

 
 
 
 
 

 
 
 

 
 
 
 
 
 

 
 

 
 
 

 
 
 

 
 

 

 
 

 
 
 
 

grids, despite some higher resolution information may be lost when working on 2.5x2.5 grid. Some  
comparisons also have been done on the forecast skills from bias corrections based on 30 and 7 days mean 
forecast errors. The results show that the 30 days mean forecast errors are more robust than the 7 days mean  
forecast errors. In general, the forecast skills from bias correction based on 30 days mean forecast errors are 
slightly better than those from bias correction based on 7 days mean forecast errors. 

Here one of major question is: Can bias correction improve GFS forecast skill? The results (Figure 2 and 
Table 1 & 2) show that in terms of spatial anomaly correlation the bias correction offers very little help in  
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North America, considerable help in South America and Africa, and some help in Asia-Australia monsoon 
regions. In terms of root mean square error (RMSE), bias correction helps everywhere!! 

Fig. 5  The temporal anomaly correlation of the daily GFS week-2 soil moisture forecast minus its 
persistence.  

4. Analysis of week-1 and week-2 forecast errors 

In order to understand why bias correction works while it varies in space and time, some detailed analysis 
on the spatial-temporal structure of the mean forecast errors has been conducted. In general, the GFS forecast 
errors can be separated into two parts, i.e. the annual mean forecast error and its variation part around the 
annual mean, which was further decomposed by using EOF analysis (see equation 3). 

M 

Bias1,2(s, t) = Mean +∑ PCm (t) ∗ EOFm (s)  (3) 
m=1 

The annual mean of the GFS week-1 and week-2 ensemble precipitation forecast errors shows that the 
GFS tend to produce too much rainfall in most regions (Figure 3). The pattern and amplitude of the week-1 
and week-2 forecast errors are very similar, indicating the GFS forecast errors are nearly saturated in week-1 
period. The variation part (against annual mean) of the GFS week-1 and week-2 ensemble precipitation (30 
day mean) forecast errors is displayed in Figure 4. The unexpected and most prominent features are that the 
GFS forecast errors are relative large-scale and low-frequency (annual and semi-annual cycles). The first two 
EOF modes of the GFS week-1 and week-2 ensemble forecast errors explains about 60% of the total 
variances. The above features exist almost everywhere (Asia-Australia and Africa are not shown here). The 
Bias correction shows a very large part of the annual mean forecast errors can be removed and some part of 
the variable forecast error can also be removed, especially in the cold season.  



  
 

 

 

 
 
 

 
 

                                                                         

                                                                        
 

 

  
 

 
  

 

 

 

 

 

 
 

 
 

 
 

   
 

P1=0.951 , C1=0.951 
PR1=16.2 , FR1=18.0

P2=0.901 , C2=0.895 
PR2=23.6 , FR2=26.5 

Fig. 6 The time series of spatial correlation and RMSE from GFS week-1 
(top) & week-2 (bottom) forecasted soil moisture anomaly and its 
persistence over the US. 30-day running mean is applied. The numbers 
in the plots are the means averaged over the whole periods (Nov. 1, 2003 
to June 20, 2009). 
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5. Application of the GFS ensemble forecast: soil moisture outlook 
The bias corrected week-1 and week-2 GFS ensemble precipitation and T2m forecasts are used to drive 

the CPC leaky bucket land surface hydrological model forward up to two weeks over the US only. Because 
there is very little ground truth can be used, all land surface initial conditions and verification datasets are 
from the CPC leaky bucket model forced with daily observed precipitation and T2m.  

Since the sea surface temperature and land surface soil moisture are the two important lower boundary 
variables and both of them have high persistence (or memory), so one interesting question (and an old 
“standard” in meteorology) is: can the soil moisture “dynamical” outlook (forced with GFS week-1 and week-
2 ensemble forecasts) beat its persistence (i.e. provide more useful information than persistence)? For most 
land surface models, the land surface hydrological budget can be represented as: 

    dW/dt = P – E – R = F               (4) 

or W(t+1) = W(t) + F       (5) 
It is clear that if the F does not have sufficient skill, the GFS “dynamical” forecasts will lose against 
persistence (i.e. F=0). Figure 5 displays the spatial-temporal distribution of daily GFS forecasted week-2 soil 
moisture anomaly correlation minus its persistence in different 12 months for periods of Jan.1, 2004 to Dec. 
31, 2008. In general, the GFS shows some useful skill over the west coast region, south east US and Texas, 
but constantly (except May) loses against persistence over the Rocky Mountain regions, which seriously 
degenerates the US overall performance of the GFS. Figure 6 depicts time evolution of the forecast skill and 
its persistence of week-1 and week-2 soil moisture anomalies averaged over the U.S. In general, both forecast 
and persistence reach their lowest values (most unpredictable time) around September, when soil moisture is 
in its driest season climatologically in the year. Overall, in terms of spatial correlation, the GFS dynamical 
forecast hardly beats persistence only by a very small number in week-1 and loses to the persistence in week-
2. In terms of RMSE, the GFS dynamical forecast loses to persistence in both week-1 and week-2. 

6.  Summary 

The above results show 
the bias corrected forecast 
skill of the NCEP GFS week-
1 and week-2 ensemble 
precipitation presents large 
day to day fluctuation with a 
clear seasonal cycle. The 
overall week-1 and week-2 
precipitation forecast skill is 
moderate. The GFS 30 day 
mean forecast errors are 
dominated by low-frequency 
(annual and semi-annual 
cycles) and relatively large-
scale error patterns. Part of the 
forecast errors is removable. 
The effectiveness of the bias 
correction is time and space 
dependent. 

The dynamical soil 
moisture forecast (i.e. land 
model forced with the bias 
corrected GFS week-1 and week-2 ensemble precipitation and 2 meter surface air temperature) has very high 
skill, but indicates that in general the current GFS is not good enough to beat soil moisture persistence (which 
is very high also) over the US. The inability to outperform the persistence relates to the skill of forecasted 
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week-1 and week-2 precipitation not being above the threshold (i.e. anomaly correlation (AC) > 0.5 is 
required). 
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